Luminescent and Proton Conducting. Lanthanide Coordination Networks Based. on a Zwitterionic Tripodal Triphosphonate

Similar documents
ELECTRONIC SUPPLEMENTARY INFORMATION

An acid-stable hexaphosphate ester-based metal-organic. framework and its polymer composite as proton exchange. membrane

Electronic Supplementary Information

highly sensitive luminescent sensing of alkylamines

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Supporting Information for the manuscript:

[MnBrL(CO) 4 ] (L = Amidinatogermylene): Reductive Dimerization, Carbonyl Substitution, and Hydrolysis Reactions

Supporting Information

ELECTRONIC SUPPORTING INFORMATION Flexible Lanthanide MOFs as Highly Selective and Reusable Liquid MeOH Sorbents

(C) Pavel Sedach and Prep101 1

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Supplementary Material

Supporting Information

Supporting Information

PART 1 Introduction to Theory of Solids

Electronic Supporting Information for

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

UNIVERSITY OF CALGARY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEMISTRY 353 READ ALL THE INSTRUCTIONS CAREFULLY

Supporting information

A vanadium(iv) pyrazolate metal organic polyhedron with permanent porosity and adsorption selectivity

Nucleus. Electron Cloud

The Periodic Table of Elements

Atoms and the Periodic Table

CHEMISTRY 102 Fall 2014 HOUR EXAM I Page 1

Intensity (a.u.) 2Theta (degrees) Supplementary data O 3 BO 3. Sup-Figure 1: Room temperature XRD patterns of KCaBO 3 :Eu 3+ sample treated at 500 ºC.

Atomic Structure & Interatomic Bonding

A water-stable zwitterionic dysprosium carboxylate metal organic. framework: a sensing platform for Ebolavirus RNA sequences

Supporting information. A luminescent lanthanide MOF for selectively and ultra-high sensitively detecting Pb 2+ ion in aqueous solution

Supplementary Information

PERIODIC TABLE OF THE ELEMENTS

If anything confuses you or is not clear, raise your hand and ask!

Supporting information

Supporting Information

Electronic Supplementary Material (ESI) for Nanoscale This journal is The Royal Society of Chemistry Characterization of CeO2 NP suspensions

Chapter 6. Electronic Structure of Atoms. The number & arrangement of e - in an atom is responsible for its chemical behavior.

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you.

7) Applications of Nuclear Radiation in Science and Technique (1) Analytical applications (Radiometric titration)

Solutions and Ions. Pure Substances

On the Host Lattice Dependence of the 4f n-1 5d 4f n Emission of Pr 3+ and Nd 3+

A STUDY OF THE FORMAMIDE-(H 2 O) 3 COMPLEX BY MICROWAVE SPECTROSCOPY

Marks for each question are as indicated in [] brackets.

Supporting Information for

Electronic Supporting Information for:

CHEM 107 (Spring-2005) Exam 3 (100 pts)

Lanthanide-Doped Energy Cascade Nanoparticles: Full Spectrum Emission by Single Wavelength Excitation

The Periodic Table of the Elements

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Last 4 Digits of USC ID:

1 Genesis 1:1. Chapter 10 Matter. Lesson. Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV)

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

Supplementary Information

Chapter 3: Stoichiometry

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

SUPPLEMENTARY INFORMATION

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

Electronic Supplementary Information (ESI)

CHEM 172 EXAMINATION 1. January 15, 2009

NAME: 3rd (final) EXAM

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Supplementary information

Supplementary Information

Photocatalysis: semiconductor physics

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5

Supporting Information for

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

1 of 5 14/10/ :21

Transition Metal Complexes Electronic Spectra 2

Phys 570. Lab 1: Refractive index and fluorescence of rare earth ions in borate glasses

Element Cube Project (x2)

CHAPTER 4: Phosphates

8. Relax and do well.

CHEM 130 Exp. 8: Molecular Models

Advanced Placement. Chemistry. Integrated Rates

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase

UNIVERSITY OF CALGARY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEMISTRY 353 READ ALL THE INSTRUCTIONS CAREFULLY

Essential Chemistry for Biology

Charged bis-cyclometalated Iridium(III) Complexes with Carbene-Based Ancillary Ligands

Atoms, Electrons and Light MS. MOORE CHEMISTRY

GENERAL PRINCIPLES OF CHEMISTRY - CHEM110 TEST 3

OES - Optical Emission Spectrometer 2000

2008 Brooks/Cole 2. Frequency (Hz)

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

X-ray, Neutron and e-beam scattering

MANY ELECTRON ATOMS Chapter 15

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Supporting Information


Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Using the Periodic Table

Supporting Information

610B Final Exam Cover Page

CrystEngComm PAPER. Introduction

Made the FIRST periodic table

Sample Analysis Design PART III

CHM 101 PRACTICE TEST 1 Page 1 of 4

Journal of Theoretics

Transcription:

Supporting information For Luminescent and Proton Conducting Lanthanide Coordination Networks Based on a Zwitterionic Tripodal Triphosphonate Montse Bazaga-García, Giasemi K. Angeli, Konstantinos E. Papathanasiou, Inés R. Salcedo, Pascual Olivera-Pastor, Enrique R. Losilla, Duane Choquesillo-Lazarte, Gary B. Hix, Aurelio Cabeza,, * and Konstantinos D. Demadis,* Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Crete, GR-71003, Greece Universidad de Málaga, Departamento de Química Inorgánica, Campus Teatinos s/n 29071-Málaga, Spain Laboratorio de Estudios Cristalográficos, IACT-CSIC, Granada, Spain School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, United Kingdom 1

TABLE OF CONTENTS: Figures: S1. Rietveld plot for [Ce 2(H 3NMP) 2(H 2O) ].H 2O. S2. Rietveld plot for [Sm(H NMP)(H 2O) 2]Cl 2H 2O. S3. Rietveld plot for [Eu(H NMP)(H 2O) 2]Cl 2H 2O. S. Rietveld plot for [Gd(H NMP)(H 2O) 2]Cl 2H 2O. S. Rietveld plot for [Tb(H NMP)(H 2O) 2]Cl 2H 2O. S. Rietveld plot for [Dy(H NMP)(H 2O) 2]Cl 2H 2O. S7. Extended hydrogen bonding interactions observed in the crystal structure of [Ce 2(H 3NMP) 2(H 2O) ].H 2O. S8. TG-MS curves for [Gd(H NMP)(H 2O) 2]Cl 2H 2O and H 2O (m/z = 18). S9. TG-MS curves for [Gd(H NMP)(H 2O) 2]Cl 2H 2O and HCl (m/z = 3). S10. TGA curves for [Ce 2(H 3NM) 2(H 2O) ].H 2O as-synthesized (blue) and post-impedance analysis (red). S11. Variation of unit cell parameters and volume with the temperature for [Sm- (H NMP)(H 2O) 2]Cl. 2H 2O. (open and fill symbols stand for decreasing and increasing temperatures respectively). S12. Rietveld plot for [Sm(H NMP)(H 2O)]Cl at 120 C and 10% RH. The inset shows the coordination environment around Sm 3+ ions in [Sm(H NMP)(H 2O)]Cl. S13. Le Bail fit for [La 2(H 3NMP) 2(H 2O) ].H 2O obtained by exposing [La(H NMP)(H 2O) 2]Cl 2H 2O at 80 ºC and 9% RH for 30 h. S1. Powder XRD patterns for [Ce 2(H 3NMP) 2(H 2O) ].H 2O at: (a) 2 C and 0% RH; (b) 80 C and 9% RH after 1 h; and (c) 80 C and 9% RH after 18 h. S1. TGA curves of [Gd(H NMP)(H 2O) 2]Cl 2H 2O as-synthesized (blue) and post-impedance (red). S1. Complex impedance plane plots at 2 ºC and 70 ºC (9% RH) for (a) [Gd(H NMP)(H 2O) 2]Cl 2H 2O and (b) [Ce 2(H 3NMP) 2(H 2O) ].H 2O. S17. (a) UV-visible absorption and (b) emission spectra of Sm-H NMPCl. S18. Emission spectrum for Eu-H NMPCl. S19. UV-visible absorption spectrum for Gd-H NMPCl. S20. (a) UV-visible absorption and (b) emission spectra for Dy-H NMPCl. 2

S21. UV-visible absorption spectrum for Ho-H NMPCl. Tables: S1. Selected bond distances (Å) for Ln-H NMPCl, (Ln= La, Pr, Sm, Eu, Gd, Tb, Dy and Ho) and Ce-H 3NMP. S2. H-bond interactions (Å) for [Ce 2(H 3NMP) 2(H 2O) ].H 2O. S3. Absorption and emission bands observed for [Pr(H NMP)(H 2O) 2]Cl 2H 2O. S. Absorption and emission bands observed for [Sm(H NMP)(H 2O) 2]Cl 2H 2O. S. Absorption and Emission bands observed for [Eu(H NMP)(H 2O) 2]Cl 2H 2O. S. Absorption and emission bands observed for [Tb(H NMP)(H 2O) 2]Cl 2H 2O. S7. Absorption and emission bands observed for [Dy(H NMP)(H 2O) 2]Cl 2H 2O. S8. Absorption and emission bands observed for [Ho(H NMP)(H 2O) 2]Cl 2H 2O. 3

Figure S1. Rietveld plot for [Ce 2(H 3NMP) 2(H 2O) ].H 2O. Experimental data (red scatters); the best-fit profile (upper trace) and the difference pattern (lower trace) are drawn as solid green and magenta lines, respectively. Black vertical bars indicate the angular positions of the allowed Bragg reflections. Figure S2. Rietveld plot for [Sm(H NMP)(H 2O) 2]Cl 2H 2O. Experimental data (red scatters); the best-fit profile (upper trace) and the difference pattern (lower trace) are drawn as solid green and magenta lines, respectively. Black vertical bars indicate the angular positions of the allowed Bragg reflections.

Figure S3. Rietveld plot for [Eu(H NMP)(H 2O) 2]Cl 2H 2O Experimental data (red scatters); the best-fit profile (upper trace) and the difference pattern (lower trace) are drawn as solid green and magenta lines, respectively. Black vertical bars indicate the angular positions of the allowed Bragg reflections. Figure S. Rietveld plot for [Gd(H NMP)(H 2O) 2]Cl 2H 2O Experimental data (red scatters); the best-fit profile (upper trace) and the difference pattern (lower trace) are drawn as solid green and magenta lines, respectively. Black vertical bars indicate the angular positions of the allowed Bragg reflections.

Figure S. Rietveld plot for [Tb(H NMP)(H 2O) 2]Cl 2H 2O Experimental data (red scatters); the best-fit profile (upper trace) and the difference pattern (lower trace) are drawn as solid green and magenta lines, respectively. Black vertical bars indicate the angular positions of the allowed Bragg reflections. Figure S. Rietveld plot for [Dy(H NMP)(H 2O) 2]Cl 2H 2O. Experimental data (red scatters); the best-fit profile (upper trace) and the difference pattern (lower trace) are drawn as solid green and magenta lines, respectively. Black vertical bars indicate the angular positions of the allowed Bragg reflections.

Figure S7. Extended hydrogen bonding interactions observed in the crystal structure of [Ce 2(H 3NMP) 2(H 2O) ].H 2O. 7

Figure S8. TG-MS curves for [Gd(H NMP)(H 2O) 2]Cl 2H 2O and H 2O (m/z = 18). Figure S9. TG-MS curves for [Gd(H NMP)(H 2O) 2]Cl 2H 2O and HCl (m/z = 3). 8

100 9 13.7% Ce-AMP (1D) as-syn Ce-AMP post-imped Weight (%) 90 8 22.7% 80 22.8% 7 0 100 200 300 00 00 00 700 Temperature (ºC) Figure S10. TGA curves for [Ce 2(H 3NM) 2(H 2O) ].H 2O as-synthesized (blue) and postimpedance analysis (red). 18,0 17,9 V 10 10 17,8 17,7 b 120 Å 17, 100 V (Å) a 180 11,2 10 11,1 20 0 0 80 100 120 Temperature (ºC) Figure S11. Variation of unit cell parameters and volume with the temperature for [Sm(H NMP)(H 2O) 2]Cl 2H 2O (open and filled symbols denote decreasing and increasing temperatures, respectively). 9

Figures S12. Rietveld plot of [Sm(H NMP)(H 2O)]Cl heated at 120 C and 10% RH. The powder pattern was collected using Mo K 1 radiation ( = 0.7093 Å). The inset shows the coordination environment around Sm 3+ in [Sm(H NMP)(H 2O)]Cl. Selected crystallographic data: a= 11.12(2) Å; b= 17.3() Å; c= 8.10(1) Å; = 11.13(8) ; V= 120.(7) Å 3 ; s.g. C c; R WP= 0.0872; R P= 0.078; R F= 0.011. Figure S13. Le Bail fit for [La 2(H 3NMP) 2(H 2O) ].H 2O obtained by exposing [La(H NMP)(H 2O) 2]Cl. 2H 2O at 80 ºC and 9% RH for 30 h. 10

Figure S1. Powder XRD patterns for [Ce 2(H 3NMP) 2(H 2O) ].H 2O at: (a) 2 C and 0% RH; (b) 80 C and 9% RH after 1 h; and (c) 80 C and 9 % RH after 18 h. 100 9 Gd-AMP post-im Gd-AMP as-syn Weight (%) 92 88 8 80 7 72 2.13% 2.71% 0 100 200 300 00 00 00 700 800 Temperature (ºC) Figure S1. TGA curves of [Gd(H NMP)(H 2O) 2]Cl 2H 2O as-synthesized (blue) and postimpedance (red). 11

3.0x10 2x10 2 ᵒC Cp=1.3 x 10-8 (F cm -1 ) 70 ᵒC Z" ( cm) 1.x10 Cp=1. x 10-11 (F cm -1 ) Z" ( cm) 1x10 0.0 0.0 1.x10 3.0x10 Z' ( cm) 0 0 1x10 2x10 Z' ( cm) x10 3.0x10 2 ᵒC 70 ᵒC Z" ( cm) 3x10 Z" ( cm) 1.x10 Cp=1.2 x 10-8 (F cm -1 ) Cp=1. x 10-11 (F cm -1 ) 0 0 3x10 x10 Z' ( cm) 0.0 0.0 1.x10 3.0x10 Z' ( cm) Figure S1. Complex impedance plane plots at 2 and 70 ºC (9% RH) for (a) [Gd(H NMP)(H 2O) 2]Cl 2H 2O and (b) [Ce 2(H 3NMP) 2(H 2O) ].H 2O. 12

Abs. / arbitrary units Abs. / arbitrary units (a) 0, (b) 0, 0,3 0,3 0,2 G /2 H /2 G /2 H 7/2 G /2 H 9/2 0,2 0,1 0,1 0,0 0 20 30 0 0 0 70 80 90 10011012013010 / nm / nm Figure S17. (a) UV-visible absorption and (b) emission spectra for Sm-H NMPCl. Eu-HNMPCl exc = 3 nm D 0 7 F 3 D 0 7 F 2 D 0 7 F 1 L 7 F 0 D 0 7 F 0 D 1 7 F Figure S18. Emission spectrum for Eu-H NMPCl. 13

Abs. 0,3 0,3 0,2 0,2 0,1 0,1 0,0 0 20 30 0 0 0 70 80 90 100 110 120 130 10 / nm Figure S19. UV-visible absorption spectrum for Gd-H NMPCl. F 9/2 H 13/2 F 9/2 H 1/2 F 9/2 H 11/2 Figure S20. (a) UV-visible absorption and (b) emission spectra for Dy-H NMPCl. 1

Abs. 0, 0, 0,3 0,2 0,1 0 20 30 0 0 0 70 80 90 100 110 120 130 10 / nm Figure S21. UV-visible absorption spectrum for Ho-H NMPCl. 1

Table S1. Selected bond distances (Å) for Ln-H NMPCl, (Ln= La, Pr, Sm, Eu, Gd, Tb, Dy and Ho) and Ce-H 3NMP. [La(H NMP)(H 2O) 2]Cl 2H 2O Length (Å) Length (Å) Length (Å) La1-O8 2.39(2) P2-O10 1.97(3) P-O13 1.97(2) La1-O20 2.8(2) P2-O19 1.09(2) P-O11 1.97(2) La1-O10 2.(3) P2-O2 1.89(2) P-O12 1.83(3) La1- O19 2.70(2) P2-C17 1.823() P-C18 1.839(3) La1-O11 2.8(2) P3-O20 1.9(2) N9-C18 1.08() La1-O13 2.87(2) P3-O8 1.9(2) N9-C17 1.08() La1-O1 2.9(3) P3-O1 1.70(3) N9-C22 1.2() La1-O 2.9(3) P3-C22 1.829(3) [Ce 2(H 3NMP) 2(H 2O) ].H 2O Length (Å) Length (Å) Length (Å) Ce1-O1w 2.08(3) P1-O1 1.2() P-O13 1.38() Ce1-O2w 2.832(3) P1-O2 1.33() P-O1 1.() Ce1-O1 2.30(1) P1-O3 1.3() P-O1 1.39() Ce1-O 2.89(2) P1-C1 1.800() P-C 1.810() Ce1-O10 2.9(2) P2-O 1.39() P-O1 1.() Ce1-O11 2.398(2) P2-O 1.3() P-O17 1.38() Ce1-O13 2.93(2) P2-O 1.() P-O18 1.2() Ce1-O1 2.77(2) P2-C2 1.808() P-C 1.80() Ce1-O1 2.(1) P3-O7 1.0() N1-C1 1.07() Ce2-O3w 2.8(3) P3-O8 1.33() N1-C2 1.9() Ce2-Ow 2.27(3) P3-O9 1.0() N1-C3 1.07() Ce2-O 2.713(2) P3-C3 1.807() N2-C 1.03() Ce2-O 2.729(2) P-O10 1.3() N2-C 1.01() Ce2-O 2.37(2) P-O11 1.3() N2-C 1.09() Ce2-O7 2.97(2) P-O12 1.8() Ce2-O8 2.33(2) P-C 1.80() Ce2-O13 2.0(1) Ce2-O1 2.0(1) [Pr(H NMP)(H 2O) 2]Cl 2H 2O Length (Å) Length (Å) Length (Å) Pr1-O8 2.39(8) P2-O19 1.9(9) P-O13 1.8(9) Pr1-O20 2.07(9) P2-O10 1.0(11) P-O11 1.9(9) Pr1-O10 2.2(1) P2-O2 1.8(9) P-O12 1.8(9) Pr1-O19 2.(8) P2-C17 1.838(13) P-C18 1.8(12) Pr1-O11 2.0(8) P3-O20 1.79(10) N9-C17 1.97(1) Pr1-O13 2.7(8) P3-O8 1.88(9) N9-C22 1.0(1) Pr1-O1 2.8(1) P3-O1 1.72(11) N9-C18 1.00(1) Pr1-O 2.10(1) P3-C22 1.80(12) 1

Table S1(cont.). Selected bond distances (Å) for Ln-H NMPCl, (Ln= La, Pr, Sm, Eu, Gd, Tb, Dy and Ho) and Ce-H 3NMP. [Sm(H NMP)(H 2O) 2]Cl 2H 2O Length (Å) Length (Å) Length (Å) Sm-O1 2.01(1) P1-O1 1.3() P3-O7 1.0() Sm-O3 2.1(2) P1-O2 1.31() P3-O8 1.33() Sm-O 2.73(2) P1-O3 1.1() P3-O9 1.() Sm-O 2.81(1) P1-C1 1.803() P3-C3 1.80() Sm-O7 2.31(2) P2-O 1.3() C1-N1 1.19() Sm-O9 2.172(2) P2-O 1.39() C2-N1 1.03() Sm-Ow1 2.90(1) P2-O 1.32() C3-N1 1.2() Sm-Ow2 2.3(9) P2-C2 1.80() [Eu(H NMP)(H 2O) 2]Cl 2H 2O Length (Å) Length (Å) Length (Å) Eu-O1 2.19(11) P1-O1 1.28() P3-O7 1.39() Eu-O3 2.29(12) P1-O2 1.37() P3-O8 1.2() Eu-O 2.01(12) P1-O3 1.1() P3-O9 1.32() Eu-O 2.2(9) P1-C1 1.809() P3-C3 1.798() Eu-O7 2.02(9) P2-O 1.3(1) C1-N1 1.11() Eu-O9 2.333(1) P2-O 1.3() C2-N1 1.02() Eu-Ow1 2.7(7) P2-O 1.38() C3-N1 1.9() Eu-Ow2 2.80(7) P2-C2 1.808() [Gd(H NMP)(H 2O) 2]Cl 2H 2O Length (Å) Length (Å) Length (Å) Gd-O1 2.0(1) P1-O1 1.33() P3-O7 1.3() Gd-O3 2.3(1) P1-O2 1.39() P3-O8 1.1() Gd-O 2.7(2) P1-O3 1.32() P3-O9 1.37() Gd-O 2.72(9) P1-C1 1.812() P3-C3 1.809() Gd-O7 2.(1) P2-O 1.32() C1-N1 1.99() Gd-O9 2.73(2) P2-O 1.3() C2-N1 1.97() Gd-Ow1 2.78(9) P2-O 1.1() C3-N1 1.00() Gd-Ow2 2.93(9) P2-C2 1.808() [Tb(H NMP)(H 2O) 2]Cl 2H 2O Length (Å) Length (Å) Length (Å) Tb-O1 2.23(1) P1-O1 1.30() P3-O7 1.32() Tb-O3 2.289(1) P1-O2 1.32() P3-O8 1.3() Tb-O 2.30(1) P1-O3 1.3() P3-O9 1.38() Tb-O 2.70(9) P1-C1 1.810() P3-C3 1.803() Tb-O7 2.1(1) P2-O 1.0() C1-N1 1.21() Tb-O9 2.317(1) P2-O 1.3() C2-N1 1.97() Tb-Ow1 2.79(8) P2-O 1.0() C3-N1 1.9() Tb-Ow2 2.02(8) P2-C2 1.80() 17

Table S1 (cont.). Selected bond distances (Å) for Ln-H NMPCl, (Ln= La, Pr, Sm, Eu, Gd, Tb, Dy and Ho) and Ce-H 3NMP. [Dy(H NMP)(H 2O) 2]Cl 2H 2O Length (Å) Length (Å) Length (Å) Dy-O1 2.18(2) P1-O1 1.39() P3-O7 1.3() Dy-O3 2.389(2) P1-O2 1.() P3-O8 1.8() Dy-O 2.332(2) P1-O3 1.32() P3-O9 1.3() Dy-O 2.07(1) P1-C1 1.81() P3-C3 1.803() Dy-O7 2.33(2) P2-O 1.32() C1-N1 1.09() Dy-O9 2.321(2) P2-O 1.37() C2-N1 1.99() Dy-Ow1 2.0(9) P2-O 1.0() C3-N1 1.88() Dy-Ow2 2.9(9) P2-C2 1.81() [Ho(H NMP)(H 2O) 2]Cl 2H 2O Length (Å) Length (Å) Length (Å) Ho01-O11 2.287(2) P1-O 1.91(2) P3-O11 1.93(2) Ho01-O12 2.297(2) P1-O 1.91(2) P3-O12 1.9(2) Ho01-O8 2.313(2) P1-O 1.8(2) P3-O10 1.70(1) Ho01-O9 2.339(2) P1-C1 1.81(2) P3-C3 1.832(2) Ho01-O 2.330(2) P2-O9 1.9(2) N1-C2 1.0(3) Ho01-O 2.380(2) P2-O8 1.10(1) N1-C1 1.0(3) Ho01-O2 2.391(2) P2-O7 1.8(2) N1-C3 1.11(3) Ho01-O1 2.0(2) P2-C2 1.817(3) Table S2. H-bond interactions (Å) for [Ce 2(H 3NMP) 2(H 2O) ].H 2O (length < 3 Å). Vector Length (Å) Vector Length (Å) Vector Length (Å) O1 O 2.90(29) O8 Ow3 2.09(33) Ow1 Ow3 2.97() O1 O10 2.831(28) O8 Ow 2.32(27) Ow1 Ow 2.0() O1 Ow2 2.72(33) O9 O18 2.290(2) Ow1 Ow7 2.98() O2 Ow2 2.71(33) O10 O1 2.878(31) Ow3 Ow 2.8() O2 Ow 2.87(3) O11 O1 2.87(32) Ow3 Ow8 3.012(29) O3 O1 2.78(2) O12 Ow 2.33(33) Ow3 Ow9 2.72(30) O O7 2.972(31) O13 Ow3 2.882(32) Ow Ow9 2.87(2) O Ow 2.922(31) O13 O1 2.80(2) Ow Ow 2.9() O O 2.913(3) O1 Ow8 2.83(19) Ow Ow8 2.7(30) O O8 2.78(32) O1 Ow10 2.28(23 Ow Ow9 2.777(30) O O17 2.330(23) O1 Ow 2.797(32) Ow8 Ow10 2.721() O Ow 2.7() O17 Ow10 2.81(20) Ow9 Ow10 2.87273(8) O Ow7 2.78(3) O18 Ow7 2.92() O7 O10 2.93(27) O7 O1 3.00(2) 18

Table S3. Absorption and emission bands observed for [Pr(H NMP)(H 2O) 2]Cl 2H 2O. Absorption Luminescence (λ exc = 3 nm) Transition Wavelength (nm) Transition Wavelength (nm) 3 H 3 P 0 3 F 2 19 3 F 3 3, F 19 1 G 102 1 D 2 92 3 H 21 3 P 0 81 3 H 3 3 P 1 1, I 9 3 H 81 3 P 2 19

Table S. Absorption and emission bands observed for [Sm(H NMP)(H 2O) 2]Cl 2H 2O. Absorption Luminescence ( exc =3 nm) Transition Wavelength Transition Wavelength H /2 (nm) G /2 (nm) H 1/2, F 3/2, F 1/2 100 F /2 139 F 7/2 12 F 9/2 1087 F 11/2 98 H 9/2 G 7/2, I 9/2, M 1/2, 7 H 7/2 98 I 11/2, I 13/2 H /2 2 F /2, M 17/2, G 9/2, I 1/2 0 P /2 17 P /2, F 7/2, F 9/2, K 11/2, M 21/2, L 1/2, 02 G 11/2 L 13/2, 393 37 D 1/2, P 7/2, L 17/2, K 13/2, F 9/2 32 D 3/2, D /2, P /2, H 7/2 3 K 1/2, H 9/2, D 7/2 20

Table S. Absorption and Emission bands observed for [Eu(H NMP)(H 2O) 2]Cl 2H 2O. Absorption Luminescence (λ exc = 3 nm) Transition Wavelength (nm) Transition Wavelength (nm) 7 F 0 D 0 D 0, D 1, D 2 79 2 L 393 7 F 3 2 G 2, G, G 37 7 F 2 11 D 32 7 F 1 92 7 F 0 79 D 1 7 F 2 L 7 F 0 00 21

Table S. Absorption and emission bands observed for [Tb(H NMP)(H 2O) 2]Cl 2H 2O. Absorption Luminescence (λ exc = 3 nm) Transition 7 F Wavelength (nm) Transition G Wavelength (nm) 7 F 3 7 F 7 0, F 7 1, F 2 191 7 F 3 20 1 7 F 83 D 87 7 F 379 7 F 89 G, D 3, L 10 371 G, G 2, G, L 9 32 D 2, L 8, L 7, G 3 32 H 7, D 0, D 1 318 22

Table S7. Absorption and emission bands observed for [Dy(H NMP)(H 2O) 2]Cl 2H 2O. Absorption Luminescence ( ex=3 nm) Transition Wavelength Transition Wavelength H 1/2 (nm) F 9/2 (nm) H 11/2 171 H 9/2, F 11/2 1289 H 7/2, F 9/2 1099 H /2, F 7/2 907 F /2 80 H 11/2 1 F 3/2 7 H 13/2 73 F 9/2 7 H 1/2 82 I 1/2 1 G 11/2 27 M 21/2, I 13/2, F 7/2, K 17/2, M 19/2 388 I 11/2, P /2, P 3/2 3 M 1/2, P 9/2 30 G 9/2, F /2, I 9/2 337 K 1/2, L 19/2, P 3/2, M 17/2, G 7/2 32 23

Table S8. Absorption and emission bands observed for [Ho(H NMP)(H 2O) 2]Cl 2H 2O. Transition I 8 I 7 I I F F, S 2 F 3 F 2 F 1 G G 3 H G 3, 3 F, 3 K 3 M 10 *Shoulder Wavelength (nm) 190 117 89,3* 38 8 73 2 18 38 31 3 332 30 2