Electromagnetic Strangeness Production at GeV Energies

Similar documents
Hyperon Photoproduction:

Hyperon Photoproduction:

One of the foundational cornerstones of the physics program in Hall B with CLAS is the N* program. πn, ωn, φn, ρn, ηn, η N, ππn KΛ, KΣ, K Y, KY

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

arxiv: v1 [nucl-th] 14 Aug 2012

Extraction Of Reaction Amplitudes From Complete Photo-Production Experiments

Light Baryon Spectroscopy What have we learned about excited baryons?

Report on NSTAR 2005 Workshop

Baryon Spectroscopy: Recent Results from the CBELSA/TAPS Experiment

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

Kaon Photoproduction Results from CLAS

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory

in high statistics experiments at CLAS

The Beam-Helicity Asymmetry for γp pk + K and

Experiments using polarized photon beam and polarized hydrogen-deuteride (HD) target

The search for missing baryon resonances

Production and Searches for Cascade Baryons with CLAS

Properties of the Λ(1405) Measured at CLAS

Exciting Baryons. with MAMI and MAID. Lothar Tiator (Mainz)

Baryon Spectroscopy at ELSA

Measurement of Double-Polarization

16) Differential cross sections and spin density matrix elements for the reaction p p, M. Williams

Nucleon Spectroscopy with CLAS

Excited Nucleons Spectrum and Structure

arxiv: v1 [nucl-th] 6 Aug 2008

Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS

A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS. 1 Introduction

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.)

Vector-Meson Photoproduction

Exotic baryon resonances in the chiral dynamics

Baryon spectroscopy with polarization observables from CLAS

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

arxiv: v1 [nucl-th] 13 Apr 2011

MENU Properties of the Λ(1405) Measured at CLAS. Kei Moriya Reinhard Schumacher

Overview of N* Physics

The Fascinating Structure of Hadrons: What have we learned about excited protons?

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

Spin Physics in Jefferson Lab s Hall C

Electroexcitation of Nucleon Resonances BARYONS 02

Electroexcitation of Nucleon Resonances BARYONS 02

arxiv: v1 [hep-ex] 22 Jun 2009

Photoexcitation of N* Resonances

Shape and Structure of the Nucleon

Recent Results from Jefferson Lab

The Determination of Beam Asymmetry from Double Pion Photoproduction

Outline. Comparison with MAID2000: Could it be a narrow state? Fermi motion correction: Some preliminaries Summary

A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS

Photoproduction of the f 1 (1285) Meson

Search for Pentaquarks at CLAS. in Photoproduction from Proton

Hadronic Cross Section Measurements for New Aspects of Hadron Spectroscopy. K. Hicks (Ohio U.) and H. Sako (JAEA) J-PARC PAC July 14, 2012

Dynamical coupled-channels channels study of meson production reactions from

Hall D & GlueX Update. Alex Barnes, University of Connecticut

Challenges of the N* Program

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis?

L-T Separation in Pseudoscalar Meson Production

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12

Hadron Spectroscopy at COMPASS

The Jefferson Lab 12 GeV Program

Hadron Spectroscopy: Results and Ideas.

The Jlab 12 GeV Upgrade

Two photon exchange: theoretical issues

What we know about the Λ(1405)

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS

New results on N* spectrum/structure with CLAS and preparation for the CLAS12 era

Nucleon Resonance Physics

Hunting the Resonances in p(γ, K + )Λ Reactions: (Over)Complete Measurements and Partial-Wave Analyses

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain

Timelike Compton Scattering

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Light-Meson Spectroscopy at Jefferson Lab

Structure and reactions of Θ +

arxiv: v1 [nucl-th] 4 Dec 2014

The MAID Legacy and Future

Meson-baryon interactions and baryon resonances

Chiral dynamics and baryon resonances

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

Role of the N (2080) resonance in the γp K + Λ(1520) reaction

Qweak Transverse Asymmetry Measurements

Photoproduction of K 0 Σ + with CLAS

Phenomenological aspects of kaon photoproduction on the nucleon

Hans-Jürgen Arends Mainz University

Investigation of K0 + photoproduction with the CBELSA/TAPS experiment

What about the pentaquark?

Cascade Production in K- and Photon-induced Reactions. Collaboration: Benjamin Jackson (UGA) Helmut Haberzettl (GWU) Yongseok Oh (KNU) K. N.

Kaon and Hyperon Form Factors in Kaon Electroproduction on the Nucleon

PoS(CD12)117. Precision Measurement of η γγ Decay Width via the Primakoff Effect. Liping Gan

Exclusive N KY Studies with CLAS12

Pseudovector versus pseudoscalar coupling. in kaon photoproduction revisited. Abstract

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

Strangeness Production Experiments at. Reinhard Schumacher Carnegie Mellon University

Spin Structure of the Nucleon: quark spin dependence

Current Status of Hadronic Physics with at

Probing nucleon structure by using a polarized proton beam

Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range -

Open questions in hadron physics Spectroscopy with the Crystal Barrel Detector Volker Credé

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

Transcription:

Electromagnetic Strangeness Production at GeV Energies Reinhard Schumacher for the CLAS & GlueX Collaborations October 9, 2014, DNP/JPS Hawaii

Outline /Overview Strangeness and the N* spectrum of states Ground state hyperon photoproduction Ground state hyperon electroproduction Dimensional scaling of photoproduction Excited Y* cross sections measured at CLAS (J P = ); (J P = ); (J P = 3/2 ) The and chiral unitary models Line shapes in Spin & parity J P of the First electro-production of K*Y production Outlook at GlueX and CLAS12 R. A. Schumacher, Carnegie Mellon University 2

Jefferson Lab Located in Newport News, Virginia Ran for ~14 yrs at 6 GeV in Halls A, B, C Upgrading to 12 GeV, new Hall D Most Y, Y* publications from Hall B Upgrading as CLAS12 for 12 GeV R. A. Schumacher, Carnegie Mellon University 3

CLAS Experiment R. A. Schumacher, Carnegie Mellon University 4

CLAS Experiment Photoproduction: Targets: unpolarized LH 2, polarized p, & HD-ice Beams: unpolarized, circular, linear, to ~5 GeV Reconstructed p or n 20x10 9 triggers 1.41x10 6 Y events in g11a Electroproduction: Q 2 from ~0.5 to ~3 (GeV/c) 2 Structure functions from Rosenbluth and beamhelicity separations R. A. Schumacher, Carnegie Mellon University 5

Strangeness and the N* Spectrum of States - Photoproduction R. A. Schumacher, Carnegie Mellon University 6

S 11 P 13 D 13 G 17 Strangeness in Physics: Status What role has e.m. strangeness physics in unraveling N* and properties? Worldwide effort to determine resonance poles, branching fractions, helicity couplings, etc. Bottom line: Stars and resonances added to world database A. V. Anisovich (BoGa) et al., Eur.Phys. J. A 48, 15 (2012) R. A. Schumacher, Carnegie Mellon University 7

Define the Spin Observables (for NO nucleon polarization) P ˆx ŷ ẑ cm.. K K+ proton P ˆx ŷ ẑ ˆx ŷ ẑ p proton 1 P cos2 d cos sin 2P O cos C x P x x x 0 d cos sin 2P O cos P C z z z z cos P cos P T cos 2 y y R. A. Schumacher, Carnegie Mellon University 8

Observables in Pseudoscalar Meson Photoproduction 4 Complex amplitudes: 16 real polarization observables. Complete measurement from 8 carefully chosen observables. πn has large cross section but in KY recoil is self-analysing πn KY recoil target target recoil I. S. Barker, A. Donnachie, J. K. Storrow, Nucl. Phys. B95 347 (1975). circ polarized photons linearly polarized photons longitudinally polarized target transversely polarized target Complete, and over-determined R. A. Schumacher, Carnegie Mellon University 9

Theory: Bonn Gatchina Model (Just one of several models on the market) Coupled channels (K-matrix) framework Input: from elastic inelastic to ± 0 N N, K ± 0 Y, N Use ALL experimental channels, including the strangeness channels & spin observables Partial Wave Analysis First extract each J P wave Fit N* and resonance pole parameters Short list of References: A. Sarantsev, V. Nikonov, A. Anisovich, E. Klempt, U. Thoma; Eur. Phys. J. A 25, 441 (2005) A.V. Anisovich et al., Eur. Phys J. A 25 427 (2005); Eur. Phys J. A 24, 111 (2005); V. A. Nikonov et al., Phys Lett. B 662, 246 (2008). A. Anisovich, E. Klempt, V. Nikonov, A. Sarantsev, U. Thoma; Eur. Phys. J. A 47, 153 (2011). R. A. Schumacher, Carnegie Mellon University 10

p Λcross section R. Bradford et al., Phys.Rev. C 73, 035202 (2006) Forward peaking indicates t-channel processes at high W Angular dependence at lower W consistent with s- and u-channel processes. R. A. Schumacher, Carnegie Mellon University 11

p : recoil polarization P Kaon-MAID model (green) F.X. Lee et al., Nucl. Phys. A695, 237 (2001). Single-channel BW resonance fits No longer up-to-date Bonn-Gatchina model (blue) Multi-channel, unitary, BW resonance fit Large suite of N* contributions Was not predictive for recoil polarization A.V. Sarantsev et al., Eur. Phys. J., A 25, 441 (2005). M. McCracken et al, (CLAS) Phys. Rev. C 81, 025201 (2010). R. A. Schumacher, Carnegie Mellon University 12

p : beam asymmetry d d d d K K unpol. GRAAL threshold range, E < 1.5 GeV LEPS 1.5 < E < 2.4 GeV 1P cos2 GRAAL The trends are consistent: is smooth and featureless at all energies and angles. LEPS R. G. T. Zegers et al. (LEPS) Phys. Rev. Lett. 91, 092001 (2003). A. DNP/JPS Lleres Hawaii et 2014 al. (GRAAL) Eur. Phys. J. A 31, 79 R. A. (2007). Schumacher, Carnegie Mellon University 13

p : beam asymmetry d d d d K K unpol. 1P cos2 BoGa 2011-1 BoGa 2011-2 Bonn-Gatchina model is not predictive in newly-measured kinematics CLAS/Glasgow Preliminary R. A. Schumacher, Carnegie Mellon University 14

p : target asymmetry CLAS/Glasgow Preliminary Bonn-Gatchina model is not predictive in newly-measured kinematics R. A. Schumacher, Carnegie Mellon University 15

p : helicity asymmetry R. A. Schumacher, Carnegie Mellon University L. Casey, Catholic U. / CLAS 16

pk + Beam-Recoil O x and O z Ox Oz GRAAL data: fair agreement with BoGa and RPR models R. A. Schumacher, A. Carnegie LleresMellon et University al., (GRAAL), Eur. Phys. J A 39, 149 (2009) 17

pk + Beam-Recoil O x and O z O x O z The Bonn- Gatchina model is (again) not predictive in newlymeasured kinematics CLAS/Glasgow Preliminary R. A. Schumacher, Carnegie Mellon University 18

pk + Beam-Recoil C x and C z pk + multipole model Kaon-MAID pk + Nikanov et al. s refit of Bonn-Gatchina coupled-channel isobar model mix includes: S 11 -wave, P 13 (1720), P 13 (1900), P 11 (1840) K + cross sections also better described with P 13 (1900) C x C z without N*(1900)P 13 C x C z with N*(1900)P 13 R. Bradford et al., (CLAS Collaboration) Phys. Rev. C 75, 035205 (2007). V. A. Nikanov et al., Phys Lett. B 662, 246 (2008). see also: A.V. Anisovich et al., Eur. Phys J. A 25 427 (2005). R. A. Schumacher, Carnegie Mellon University 19

Lots more could be said Omit results for photoproduction Omit discussion of reactions on the neutron (deuteron), which tease isospin dependence apart. (Cf. talk by T. Kageya, KC11) Overall goal: measure enough observables for complete determination of amplitudes extract N* and content R. A. Schumacher, Carnegie Mellon University 20

Seeking New S=0 Baryons via Mesons off the Proton: published, acquired, FroST(g9b) σ Σ T P E F G H T x T z L x L z O x O z C x C z CLAS run Period pπ 0 g1, g8, g9 nπ + g1, g8, g9 pη g1, g11, g8, g9 pη g1, g11, g8, g9 pω g11, g8, g9 K + Λ g1, g8, g11 K + Σ 0 g1, g8, g11 K 0* Σ + g1, g8, g11 Source: V. D. Burkert R. A. Schumacher, Carnegie Mellon University 21

Seeking New S=0 Baryons via Mesons off the Neutron: published, acquired, HD-ice σ Σ T P E F G H T x T z L x L z O x O z C x C z CLAS run Period pπ - g2, g10, g13, g14 pρ - g2, g10, g13, g14 K 0 Λ g13, g14 K 0 Σ 0 g13, g14 K + Σ - g10, g13, g14 K 0* Σ 0 g10, g13 The combination of all of these measurements on proton and neutron targets represents an extremely powerful tool in the search for new baryon states. Source: V. D. Burkert R. A. Schumacher, Carnegie Mellon University 22

Ground States - Electroproduction (cf. D. Carman KC6) R. A. Schumacher, Carnegie Mellon University 23

Structure Functions For unpolarized target & polarized e - beam: Transverse d d K d dq dw d Longitudinal (sensitive to J=0 ± exchange in t-channel: kaons, diquarks) d 4 2 2 ( Q, W) Q, W,,, 2 K K dk Transverse-transverse interference Virtual photon flux Meson cross section Transverse-longitudinal interference Helicity structure cos(2 ) 2 ( 1) cos( ) h 2 (1 ) u Unseparated T L L TT L LT L LT' R. A. Schumacher, Carnegie Mellon University 24

Structure Functions E = 5.5 GeV, W: thr 2.6 GeV, Q 2 = 1.80, 2.60, 3.45 GeV 2 [Carman et al., PR C 87, 025204 (2013)] R. A. Schumacher, Carnegie Mellon University 25

Structure Functions E = 5.5 GeV, W: thr 2.6 GeV, Q 2 = 1.80, 2.60, 3.45 GeV 2 [Carman et al., PR C 87, 025204 (2013)] R. A. Schumacher, Carnegie Mellon University 26

Recoil Polarization ep e K + P N P N W (GeV) <Q 2 > ~ 1.9 GeV 2 [Gabrielyan et al., PR C 90, 035202 (2014)] Kaon-Maid Maxwell RPR-2007 RPR-2011 (solid-full, dash-nr) W (GeV) [McCracken et al., PR C 81, 025201 (2010)] R. A. Schumacher, Carnegie Mellon University 27

Transfer Polarization epe K + 5.754 GeV Summed over Q 2, Data not included in fits Rule out P 11 (1900) assignment D 13 (1900) not ruled out via P data but with S.F. data Isobar Model Mart Regge Model GLV RPR w P 11 (1900) - Ghent RPR w D 13 (1900) - Ghent RPR background + S 11 (1650), P 11 (1710), P 13 (1720), P 13 (1900) [Carman et al., PRC 79, 065205 (2009)] R. A. Schumacher, Carnegie Mellon University 28

L/T Separation [Ambrozewicz et al., PR C 75, 045203 (2007)] R. A. Schumacher, Carnegie Mellon University 29

CLAS e p Data Set Overview # Run E b (GeV) Trig. 1 e1c 2.567 900 2 e1c 4.056 370 3 e1c 4.247 620 4 e1c 4.462 420 5 e1d 4.817 300 6 e1-6 5.754 4500 7 e1f 5.499 5000 8 e1g 3.178 2500 K + recoil polariazation W=1.6-2.7 GeV, <Q 2> =1.9 GeV 2 [Gabrielyan et al., PR C 90, 035202 (2014)] Publications: K + beam-recoil pol. transfer W=1.6-2.15 GeV, Q 2 =0.3 1.5 GeV 2 [Carman et al., PRL 90, 131804 (2003)] K + L / T ratio from pol. transfer data W=1.72-1.98 GeV, Q 2 ~0.7 GeV 2 [Raue & Carman, PR C 71, 065209 (2005)] K +, K + 0 separated structure functions W=thr-2.4 GeV, Q 2 =0.5-2.8 GeV 2 U, LT, TT, L, T -K +, K + 0 [Ambrozewicz et al., PR C 75, 045203 (2007)] W=thr-2.6 GeV, Q 2 =1.4-3.9 GeV 2 U, LT, TT, LT K +, K + 0 [Carman et al., PRC 87, 025204 (2013)] K + fifth structure function LT W=1.6-2.1 GeV, Q 2 =0.65, 1.0 GeV 2 [Nasseripour et al., PR C 77, 065208 (2008)] K +, K + 0 beam-recoil pol. transfer W=thr-2.6 GeV, Q 2 =1.6-2.6 GeV 2 [Carman et al., PR C 79, 065205 (2009)] R. A. Schumacher, Carnegie Mellon University 30

Dimensional Scaling of Publication: Scaling and Resonances in Elementary Photoproduction, R.A.Sch. and M.M. Sargsian Phys.Rev.C83 025207 (2011). R. A. Schumacher, Carnegie Mellon University 31

Constituent-Counting Scaling N N d t f s dt s 2n M B M B n=9 n=10 Constituent counting rules for exclusive scattering Valid for s and t/s fixed t/s ~ cos( cm ) as s n = number of pointlike constituents Follows from pqcd but also other models Does it work for? S. J. Brodsky and G. R. Farrar, PRL 31, 1153 (1973) R. A. Schumacher, Carnegie Mellon University 32

Resonance Fit to Cross Section p K cos S 11 (1690) P 13 (1920) D 13 (2100) pqcd-like scaling R.A. Schumacher and M.M. Sargsian Phys. Rev. C83 025207 (2011). R. A. Schumacher, Carnegie Mellon University 33

N* Baryons: Seen & Missing Relativized CQM Classify oscillator-model states by I, J, P Consistent with observation of a missing N* state in K + PDG2013 now lists the ** N(2150) D 13 S. DNP/JPS Capstick Hawaii 2014 and W. Roberts, Phys. Rev. D58, R. (1998). A. Schumacher, Carnegie Mellon University 34

Excited Y* Cross Sections Publication: Differential Photoproduction Cross Sections of 0 (1385), (1405) and (1520), K. Moriya et al. (CLAS Collaboration), Phys. Rev. C 88, 045201 (2013). R. A. Schumacher, Carnegie Mellon University 35

Detect p or n MeV (1520) (1405) (1385) to (1385) has small branching fraction into the states R. A. Schumacher, Carnegie Mellon University 36

Differential 0 (1385) Cross Section + p K + + (1385) Experiment: see t- channel-like forward peaking & u-channel backward rise Agreement with LEPS Theory by Oh et al. 1 : contact term dominant; included four high-mass N* and resonances Prediction was fitted to preliminary CLAS total cross section (years ago) 1. Y. Oh, C. M. Ko, K. Nakayama, Phys. Rev. C 77, 045204 (2008) cos cm K.. R. A. Schumacher, K. Moriya Carnegie Mellon et al. University (CLAS), Phys. Rev. C 88, 045201 (2013). 37

Differential (1520) Cross Section + p K + + (1520) Experiment: see t- channel-like forward peaking & u-channel backward rise Agreement with LEPS 1,2 Theories: Nam & Kao 3 : contact term dominant; no or u- channel exchanges He & Chen 4 : and N(2080)D 13 J P =3/2 added.. cos cm K R. A. Schumacher, Carnegie Mellon University 1. H. Kohri et al. (LEPS) Phys Rev Lett 104, 172001 (2010) 2. N. Muramatsu et al. (LEPS) Phys Rev 103, 012001 (2009) 3. S.I. Nam & C.W. Kao, Phys. Rev. C 81, 055206 (2010) 4. J. He & X.R. Chen, Phys. Rev. C 86, 035204 (2012) K. Moriya et al. (CLAS), Phys. Rev. C 88, 045201 (2013). 38

Differential (1405) Cross Section + p K + + (1405) Experiment: first-ever measurements High W: See t-channellike forward peaking & u-channel backward rise at high W Low W: See strong isospin dependence Charge channels differ WHY?!? Channels merge together at high W cos cm K.. R. A. Schumacher, K. Moriya Carnegie Mellon et al. University (CLAS), Phys. Rev. C 88, 045201 (2013). 39

Differential (1405) Cross Section Williams Nam cos cm K + p K + + (1405) Sum three decay modes net differential cross section Mixed agreement with LEPS data 1 Theories: Nam et al. 2 : s-channel Born term dominant ; K* exchange for 3 values of g K*N* Williams, Ji, Cotanch 3 : crossing and duality contraints; no N*, estimated g KN* 1. M. Niiyama et al. (LEPS) Phys Rev C78, 035202 (2008) 2. S.I. Nam et al., J. Kor. Phys. Soc. 59, 2676 (2011) 3. R. Williams et al., Phys. Rev. C43, 452 (1991).. R. A. Schumacher, K. Moriya Carnegie Mellon et al. University (CLAS), Phys. Rev. C 88, 045201 (2013). 40

Total Cross Sections Comparison + p K + + Y (*) All three Y * s have similar total cross sections Ground state and are comparable to Y * in size 1 1. R. Bradford et al. (CLAS) Phys. Rev. C 73, 035202 (2006) K. Moriya et al. (CLAS), Phys. Rev. C 88, 045201 (2013). R. A. Schumacher, Carnegie Mellon University 41

(1405) and Chiral Unitary Models Publications: Measurement of the Photo-production Line Shapes Near the (1405), K. Moriya et al. (CLAS Collaboration), Phys. Rev. C 87, 035206 (2013); Isospin Decomposition of the Photoproduced System near the (1405), R. A. Sch. & K. Moriya, Nucl. Phys A 914, 51 (2013). R. A. Schumacher, Carnegie Mellon University 42

Chiral Unitary Models (example 1) SU(3) baryons irreps 1+8 s +8 a combine with 0 - Goldstone bosons to generate: Two octets and a singlet of ½ - baryons generated dynamically in SU(3) limit SU(3) breaking leads to two S=-1 I=0 poles near 1405 MeV ~1420 mostly KN ~1390 mostly Possible weak I=1 pole also predicted D. Jido, J.A. Oller, E. Oset, A. Ramos, U-G Meissner Nucl. Phys. A 725, 181 (2003) J.A. Oller, U.-G. Meissner Phys. Lett B 500, 263 (2001). R. A. Schumacher, Carnegie Mellon University 43

Example at W=2.30 GeV I=0 contributions with threshold break 0 0 I=1 contribution R. A. Sch. & K. Moriya, Nucl. Phys A 914, 51 (2013) 44 R. A. Schumacher, Carnegie Mellon University

Isospin Interference p Y* K + Final state 3 =, Three charge combinations: R. A. Schumacher, Carnegie Mellon University 45

What is the I=1 piece? I=1 resonance? I=1 continuum amplitude? L. Roca and E. Oset paper 1 Possible I=1 resonance in vicinity of threshold B.-S. Zou papers 2 1 is a [ ud][ us] s NK state: part of a new nonet 2 No interference seen in (1520) mass range: therefore it s not a continuum amplitude More investigation needed! 1. L. Roca, E. Oset On the isospin 0 and 1 resonances from πσ photoproduction data Phys. Rev. C 88 055206 (2013). 2. Bing-Song Zou Five-quark components in baryons, Nucl Phys A 835 199 (2010). R. A. Schumacher, Carnegie Mellon University 46

Best model calculation L. Roca and E. Oset best job so far NK Possible I=1 resonance in vicinity of threshold 1. L. Roca, E. Oset On the isospin 0 and 1 resonances from πσ photoproduction data Phys. Rev. C 88 055206 (2013). R. A. Schumacher, Carnegie Mellon University 47

Compare Line Shapes Cross Sections This effect is NOT seen for the Λ(1520) No model calculation has computed cross section and line shapes together. R. A. Schumacher, Carnegie Mellon University 48

Spin and Parity of (1405) Publication: Spin and Parity of the L(1405) Baryon, K. Moriya et al. (CLAS Collaboration), Phys. Rev. Lett. 112, 082004 (2014). R. A. Schumacher, Carnegie Mellon University 49

Parity and Spin of (1405) How does one measure these things? Find a reaction wherein is created polarized Decay angular distribution to relates to J J = 1/2 : flat distribution is the best possible evidence J = 3/2 : smile or frown distribution, where p is the fraction 3(1 2 p) I( Y) 1 cos 2p 1 Parity given by polarization transfer to daughter No model dependence: pure kinematics 2 Y R. A. Schumacher, Carnegie Mellon University 50

S-wave, P-wave Scenarios L=0 (s-wave) L=1 (p-wave) +2( J P = ½ J P = ½ (1405) R. A. Schumacher, Carnegie Mellon University 51

Parity and Spin of (1405) (one bin of nine) J P = ½ s-wave p-wave confirms quark model expectation Polarization axis is along ẑ ˆ ˆ K Used W=2.55 to 2.85.. GeV, cos cm K 0.6 Decay is isotropic ( p = 0.5), so J 1/2 Weak decay asymmetry for is = 0.98 (big!) Decay is s-wave, P" negative" and is produced ~ +45% polarized R. A. Schumacher, Carnegie Mellon University 52

Electroproduction Publication: First Observation of the (1405) Line Shape in Electroproduction, H. Lu et al. (CLAS Collaboration), Phys. Rev. C 88, 045202 (2013). R. A. Schumacher, Carnegie Mellon University 53

Electroproduction of (1405) e p p Q 2 e K e e Q 2 (1405) K + (1405) K + (1405) Probe the pole structure for Q 2 > 0 via electromagnetic form factors Theory: e.m. form factors computed; (1405) is larger than the neutron Experiment: hard to isolate pure e.m. vertex In CLAS e p e K p four particles detected CLAS acceptance: 1.0 < Q 2 < 3.0 GeV 2 ; 1.5 < W < 3.5 GeV. cf: T. Sekihara, T. Hyodo, D. Jido, Phys Rev C83, 055202 (2011). R. A. Schumacher, Carnegie Mellon University 54

Electroproduction of (1405) Fit to PDG Free fit (1520) Two poles fit (1520) R. A. Schumacher, Carnegie Mellon University Two-bump structure seen Possible evidence for two I=0 poles PDG (1405) values fail utterly Calculation needed! H. Lu et al. (CLAS), Phys. Rev. C 88, 045202 (2013). 55

Production Publication: Cross Sections for the p and p Reactions, W. Tang et al. (CLAS) Phys. Rev. C 87, 065204 (2013). R. A. Schumacher, Carnegie Mellon University 56

K *+ K *+0 photoproduction N* search with coupling to K*Y Search for -meson interaction R. A. Schumacher, Carnegie Mellon University 57

K *+ K *+0 photoproduction Models include known highmass resonances R. A. Schumacher, Carnegie Mellon University 58

K *+ K *+0 photoproduction Suggestion of - meson exchange R. A. Schumacher, Carnegie Mellon University 59

The Future: Outlook at GlueX and CLAS12 R. A. Schumacher, Carnegie Mellon University 60

Lattice QCD Predictions Lattice QCD now predicts rich baryon families Most states not identified by experiment yet flavor singlet flavor octet flavor decouplet R. Edwards et al., PRD 87, 054506 (2013) R. A. Schumacher, Carnegie Mellon University 61

Baryon Spectroscopy JLab at 12 GeV will surpass many Y* thresholds S = -1, -2, -3 Many states remain undiscovered Charm threshold (K. Moriya, priv. comm.) R. A. Schumacher, Carnegie Mellon University 62

Hall D/GlueX New hall, finished construction Commissioning NOW Approved for 120 PAC days of commissioning, 220 days of high statistics running R. A. Schumacher, Carnegie Mellon University 63

Hall D/GlueX Real photon beam centered at 9 GeV Liquid hydrogen target Reconstruct both charged and neutral particles over large angular range Hermetic detector within solenoid magnetic field Meson & Baryon spectroscopy: search for new and exotic states R. A. Schumacher, Carnegie Mellon University 64

GlueX Study of Use simulated data to study γ Κ - K + K + π - p Final state is 5 charged particles, K +, K +, K -, p, π - Can GlueX reconstruct this? Reconstruction efficiency 10 MeV mass resolution Secondary vertex resolution: ~1 cm along beam line (z-direction) cτ=7.89 cm (K. Moriya, priv. comm.) R. A. Schumacher, Carnegie Mellon University 65

Hall B / CLAS12 (cf. L. Elouadrhiri 2WG2) R. A. Schumacher, Carnegie Mellon University 66

CLAS12: Very Strange Baryons R. A. Schumacher, Carnegie Mellon University (R. devita, priv. comm.) 67

Summary/Conclusions Hyperon photo- and electro-production used to pin down N* spectrum above 1.6 GeV Y* e.m. cross sections compared Interference effects in (1405) cross section(s) and line shapes demonstrated Direct J P measurement for (1405) made: ½ JLab program at 12 GeV in CLAS12 and GlueX will explore Y* and meson spectra R. A. Schumacher, Carnegie Mellon University 68