Columbia University Department of Physics QUALIFYING EXAMINATION

Similar documents
Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION

DEPARTMENT OF PHYSICS. University at Albany State University of New York. Comprehensive Field Examination. Classical. Monday, May 21, 2018

Physics 2101, Final Exam, Spring 2007

DO NOT TURN PAGE TO START UNTIL TOLD TO DO SO.

PHYSICS 111 SPRING EXAM 2: March 7, 2017; 8:15-9:45 pm

General Physics 1. School of Science, University of Tehran Fall Exercises (set 07)

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7.

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION

FINAL EXAM CLOSED BOOK

Columbia University Department of Physics QUALIFYING EXAMINATION

Physics 1135 Version A

Sample Final Exam 02 Physics 106 (Answers on last page)

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Columbia University Department of Physics QUALIFYING EXAMINATION

PHYSICS 221 Fall 2016 EXAM 2: November 02, :15pm 10:15pm. Name (printed): Recitation Instructor: Section #:

AAPT UNITED STATES PHYSICS TEAM AIP 2017

PHYSICS 221 SPRING EXAM 2: March 30, 2017; 8:15pm 10:15pm

Columbia University Department of Physics QUALIFYING EXAMINATION

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition)

S13 PHY321: Final May 1, NOTE: Show all your work. No credit for unsupported answers. Turn the front page only when advised by the instructor!

Figure 1 Answer: = m

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Potential Energy & Conservation of Energy

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8

Chapter 14 Periodic Motion

Physics Mechanics. Lecture 32 Oscillations II

PHYSICS 221 Fall 2007 EXAM 2: November 14, :00pm 10:00pm

Name (please print): UW ID# score last first

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

Chapter 5 Oscillatory Motion

PY205N Spring The vectors a, b, and c. are related by c = a b. The diagram below that best illustrates this relationship is (a) I

8.012 Physics I: Classical Mechanics Fall 2008

AAPT UNITED STATES PHYSICS TEAM AIP 2018

Columbia University Department of Physics QUALIFYING EXAMINATION

PHYSICS 221 SPRING 2014

AP Physics C. Momentum. Free Response Problems

Use a BLOCK letter to answer each question: A, B, C, or D (not lower case such a b or script such as D)

Physics 106 Sample Common Exam 2, number 2 (Answers on page 6)

Physics 106 Common Exam 2: March 5, 2004

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Lecture 2 - Thursday, May 11 th, 3pm-6pm

PHYSICS 221 SPRING 2015

Physics 53 Summer Exam I. Solutions

Physics Exam 2 October 11, 2007

Exam 2: Equation Summary

Department of Physics

Mechanics Departmental Exam Last updated November 2013

Physics 211 Spring 2014 Final Practice Exam

Physics 207 Lecture 25. Lecture 25. HW11, Due Tuesday, May 6 th For Thursday, read through all of Chapter 18. Angular Momentum Exercise

Ch 10 HW: Problem Spring Force

AP Physics Free Response Practice Oscillations

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

= y(x, t) =A cos (!t + kx)

EN40: Dynamics and Vibrations. Final Examination Wed May : 2pm-5pm

Family Name: Given Name: Student number:

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.

Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY. Course: PHYS 1P21/1P91 Number of students: 260 Examination date: 10 November 2014

Chapter 15 Periodic Motion

(1) +0.2 m/s (2) +0.4 m/s (3) +0.6 m/s (4) +1 m/s (5) +0.8 m/s

Show all work in answering the following questions. Partial credit may be given for problems involving calculations.

National Quali cations

Columbia University Department of Physics QUALIFYING EXAMINATION

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion

Ph.D. QUALIFYING EXAMINATION PART A. Tuesday, January 3, 2012, 1:00 5:00 P.M.

Columbia University Department of Physics QUALIFYING EXAMINATION

Physics 351, Spring 2017, Homework #3. Due at start of class, Friday, February 3, 2017

Physics 121, Final Exam Do not turn the pages of the exam until you are instructed to do so.

Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST:

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

OSCILLATIONS ABOUT EQUILIBRIUM

The distance of the object from the equilibrium position is m.

Concept Question: Normal Force

Columbia University Department of Physics QUALIFYING EXAMINATION

PHYSICS 111 SPRING EXAM 2: March 6, 2018; 8:15-9:45 pm

Simple Harmonic Motion Practice Problems PSI AP Physics B

Physics 218: FINAL EXAM April 29 th, 2016

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

Columbia University Department of Physics QUALIFYING EXAMINATION

BSc/MSci EXAMINATION. Vibrations and Waves. Date: 4 th May, Time: 14:30-17:00

PHYSICS 221 SPRING FINAL EXAM: May 4, :30pm - 6:30pm

Chapter 14 Oscillations

ACP Physics Exam Final Exam

Rotational motion problems

PHYSICS 111 SPRING EXAM 2: March 6, 2018; 8:15-9:45 pm

AP Physics C: Work, Energy, and Power Practice

a. What is the angular frequency ω of the block in terms of k, l, and m?

Old Exam. Question Chapter 7 072

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string?

Physics 2211 M Quiz #2 Solutions Summer 2017

OPEN ONLY WHEN INSTRUCTED

Transcription:

Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 11, 2016 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of this section of the examination. Choose 4 problems out of the 5 included in this section. (You will not earn extra credit by doing an additional problem). Apportion your time carefully. Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s) which question you are answering (e.g., Section 1 (Classical Mechanics), Question 2, etc.). Do NOT write your name on your answer booklets. Instead, clearly indicate your Exam Letter Code. You may refer to the single handwritten note sheet on 8 1 11 paper (double-sided) you 2 have prepared on Classical Physics. The note sheet cannot leave the exam room once the exam has begun. This note sheet must be handed in at the end of today s exam. Please include your Exam Letter Code on your note sheet. No other extraneous papers or books are permitted. Simple calculators are permitted. However, the use of calculators for storing and/or recovering formulae or constants is NOT permitted. Questions should be directed to the proctor. Good Luck! Section 1 Page 1 of 6

1. Two balls, each of mass m = 2.00 kg and negligible radius are attached to a thin rod of length L = 50.0 cm of negligible mass. The rod is free to rotate in a vertical plane without friction about a horizontal axis through its center in the gravitational field at the surface of the Earth (assumed to be uniform). With the rod initially stationary and horizontal (see Figure), a wad of wet putty of mass M = 50.0 g drops onto one of the balls, hitting it with a speed v 0 = 3.00 m/s and then sticking to it. (a) What is the angular speed of the system just after the putty wad hits? (b) What is the ratio of the kinetic energy of the system after the collision to that of the putty wad just before? (c) Through what angle will the system rotate before it momentarily stops? Section 1 Page 2 of 6

2. Consider the general problem of N beads of mass m that slide frictionlessly around a circular hoop. Adjacent pairs of beads are connected by springs with identical spring constants and equilibrium lengths. This system of springs and beads forms a closed circle around the hoop. For any given N, the spring constant is chosen such that in equilibrium, the springs are under tension T. Answer the following questions: (a) Suppose N = 2. For t < 0 bead #1 is held fixed at a reference position, θ 1 = 0, and bead #2 is held fixed at θ 2 = π + where π. At t = 0 the beads are released. Find the subsequent motion of the two beads, i.e. θ 1 (t) and θ 2 (t). (b) Suppose N = 3. Find the normal modes of the system and their corresponding frequencies. The figure below shows this three-bead configuration. Section 1 Page 3 of 6

3. A mass m can slide without friction in two dimensions on a horizontal surface. It is attached by a massless rope of length L to a second mass M through a hole in the surface. The mass M hangs vertically in a uniform vertical gravitational field g. (a) If the mass m moves in a circle of radius r 0 centered on the hole with constant angular velocity ω 0, what is value of ω 0? (b) Show that this motion is stable against small perturbations. (c) Find the frequency of small oscillations about this circular motion. Section 1 Page 4 of 6

4. As shown in the figure, a uniform thin rod of weight W and length L is supported horizontally by two supports, one at each end of the rod. At t = 0, one of the supports is removed. Find the force on the remaining support in terms of W immediately thereafter (at t = 0). At this instant, what is the angular acceleration around the remaining support in terms of L and g? Section 1 Page 5 of 6

5. A block of mass m = 200 g is attached to a horizontal spring with spring constant k = 0.85 N/m. The other end of the spring is fixed. When in motion, the system is damped by a force proportional to the velocity, with proportionality constant b = 0.2 kg/s. (a) Write the differential equation of motion for the system. (b) Show that the system is underdamped. Calculate the oscillation period and compare it to the natural period. (c) How long does it take for the oscillating block to lose 99.9% of its total mechanical energy? How many cycles does this correspond to? By what factor does the amplitude decrease during this time? The system is now subject to a harmonic external force, F (t) = F 0 cos(ω e t), with a fixed amplitude F 0 = 1.96 N. (d) Calculate the driving frequency ω e,max at which amplitude resonance (i.e. when the amplitude is maximized) occurs, and find the steady-state maximum amplitude to which this corresponds. Section 1 Page 6 of 6

Section 1-1 Johnson 1 Falling putty (Johnson) 1.1 Problem Two balls, each of mass m = 2.00 kg and negligible radius are attached to a thin rod of length L = 50.0 cm of negligible mass. The rod is free to rotate in a vertical plane without friction about a horizontal axis through its center in the gravitational field at the surface of the Earth (assumed to be uniform). With the rod initially stationary and horizontal (see Figure), a wad of wet putty of mass M = 50.0 g drops onto one of the balls, hitting it with a speed v 0 = 3.00 m/s and then sticking to it. a. What is the angular speed of the system just after the putty wad hits? b. What is the ratio of the kinetic energy of the system after the collision to that of the putty wad just before? c. Through what angle will the system rotate before it momentarily stops? 1.2 Solution 2

Section 1-1 Johnson

Section 1-1 Johnson

Section 1-2 Cole 2 Beads on a hoop (Cole) 2.1 Problem Consider the general problem of N beads of mass m that slide frictionlessly around a circular hoop. Adjacent pairs of beads are connected by springs with identical spring constants and equilibrium lengths. This system of springs and beads forms a closed circle around the hoop. For any given N, the spring constant is chosen such that in equilibrium, the springs are under tension T. Answer the following questions: a. Suppose N = 2. For t < 0 bead #1 is held fixed at a reference position, θ 1 = 0, and bead #2 is held fixed at θ 2 = π + where π. At t = 0 the beads are released. Find the subsequent motion of the two beads, i.e. θ 1 (t) and θ 2 (t). b. Suppose N = 3. Find the normal modes of the system and their corresponding frequencies. The figure below shows this three-bead configuration. 2.2 Solution 5

Section 1-2 Cole N Beads on a hoop solutions The displacement of bead with index i from its equilibrium position will be written ξ i. Since the net force on a bead is zero with all of the beads at their equilibrium positions we can write the equations of motion purely in terms of the displacements ξ. a. The spring constant k can be expressed in terms of the tension using T = 2πRk or k = T/2πR. The equations of motion for the two beads can be written mr ξ 1 = kr (ξ 2 ξ 1 ) kr (ξ 1 ξ 2 ) = 2kR (ξ 2 ξ 1 ) mr ξ 2 = kr (ξ 1 ξ 2 ) kr (ξ 2 ξ 1 ) = 2kR (ξ 1 ξ 2 ) If we add and subtract the two equations of motion we obtain, mr ( ξ1 + ξ 2 ) = 0. mr ( ξ2 ξ 1 ) = 4kR(ξ2 ξ 1 ) If we define ξ s = ξ 1 + ξ 2 and ξ d = ξ 2 ξ 1 and simplify we obtain the two equations ξ 2 = 0. ( ) k ξ d = 4 m The first equation which describes the first normal mode of the system and has the solution ξ s = ξ 0 + ω s t, describes the simultaneous motion of the beads around the circle at constant separation. The second equation which describes the second n normal mode corresponds to simple harmonic oscillation of the ξ d coordinate with frequency ω d = 2 k/m. We can write the general solution of that equation, ξ d = A cos ω d t + B sin ω d t. We can obtain the constants ξ 0, ω s, A, and B from the initial conditions. we have ξ s (t = 0) = ξ 0 = ξ 1 (t = 0) + ξ 2 (t = 0) = /2 ξ d (t = 0) = A = ξ 2 (t = 0) ξ 1 (t = 0) = /2 ξ s (t = 0) = ω s = ξ 1 (t = 0) + ξ 2 (t = 0) = 0 ξ d (t = 0) = Bω d = ξ 2 (t = 0) ξ 1 (t = 0) = 0 ξ d Or more succinctly, ξ 0 =, A =, ω s = 0, B = 0. Now we express ξ 1 and ξ 2 in terms of ξ s and ξ d, with the results for ξ 1 (t) and ξ 2 (t), ξ 1 = 1 2 (ξ s ξ d ), ξ 2 = 1 2 (ξ s + ξ d ) ξ 1 (t) = 2 [1 cos (ω d t)] ξ 2 (t) = 2 [1 + cos (ω d t)]

of constants in the problem that have the correct dimensions for v 2 is v 2 = T/µ (similar to waves on a string). We can write the general standing wave solution Section 1-2 ξ(θ, t) = A sin (krθ α) cos (ωt φ) Cole where α and φ are spatial and temporal phase angles respectively. As usual ω/k = v. Now, waves that propagate on the hoop must satisfy the periodicity condition ξ(θ + 2π, t) = ξ(θ, t). Thus, we are restricted to solutions where 2πkR = n2π or kr = n where n is an integer. Thus yields values for k, k = 1/R, 2/R,... However, as with the N = 2 case in part a, there is a solution corresponding to no oscillation where the beads simply move around the loop at constant angular velocity. The solution corresponds to ω = 0. So, strictly speaking the two lowest frequencies of motion of the systemn have ω = 0 and ω = v/r. c. The equations of motion take the form ξ i = k m (2ξ i ξ i 1 ξ i+1 ξ) ω0 2 (2ξ i ξ i 1 ξ i+1 ξ) with i cyclic: i = 0 i = 3and i = 4 i = 1. hewre we have defined with ω 0 k/m. If we assume the existence of normal mode solutions to the motion of the form U = A cos (ω t φ) with ξ i = C i U and substitute into the equations of motion we obtain an eigenvalue equation ω 2 2ω0 2 ω0 2 ω0 2 ω0 2 ω 2 2ω0 2 ω0 2 ω0 2 ω0 2 ω 2 2ω0 2 C 1 C 2 C 3 = ω 2 0 r 2 2 1 1 1 r 2 2 r 2 1 1 r 2 2 r = ω/ω 0. Applying the usual requirement on the determinant (zero) Det we obtain the characteristic equation r 2 2 1 1 1 r 2 2 1 1 1 r 2 2 = 0 ( r 2 2 ) ( ( r 2 2 ) ) 2 1 ( r 2 2 1 ) + ( 1 ( r 2 2 )) = 0 Simplifying, we can write the characteristics equation ( r 2 2 ) 3 3 ( r 2 2 ) + 2 = 0 C 1 C 2 C 3 = 0 Expanding out all the terms and cancelling where appropriate we obtain r 6 6r 4 + 9r 2 = r 2 ( r 2 3 ) 2 = 0

Section 1-2 Cole with the solutions r 2 = 0 and (degenerate) r 2 = 3 (taking only the positive root for solutions to normal mode motion. The r 2 = 0 solution corresponds to no oscillation. The resulting equation(s) for the (unnormalized) eigenvector taking C 1 = 1 are C 2 + C 3 = 2, 2C 2 + C 3 = 1 which give as solutions, C 2 = 1 and C 3 = 1 for a normalized eigenvector, C = 1 [ ] 1 1 1 3 Clearly this solution corresponds to the simultaneous motion of the beads around the hoop. Now consider the degenerate solution r 2 = 3 which means ω = 3ω 0. We obtain a redundant equation for the eigenvectors, C 1 + C 2 + C 3 = 0. The redundancy (due to the degeneracy which, in turn results from the symmetry of the problem under cyclic permutation of the indices) means that we have freedom in choosing the remaining two eigenvectors as long as they are orthogonal. One valid choice based on intuition about how normal modes work is to have one bead fixed and the others to oscillate with opposite phase, namely C = 1 [ ] 1 1 0 2 Giving a final eigenvector C = 2 [ 1 1 1 2 2 3 ]

Section 1-3 Humensky 3 Two masses and a rope (Humensky) 3.1 Problem A mass m can slide without friction in two dimensions on a horizontal surface. It is attached by a massless rope of length L to a second mass M through a hole in the surface. The mass M hangs vertically in a uniform vertical gravitational field g. a. If the mass m moves in a circle of radius r 0 centered on the hole with constant angular velocity ω 0, what is value of ω 0? b. Show that this motion is stable against small perturbations. c. Find the frequency of small oscillations about this circular motion. 3.2 Solution a. Balance the gravitational force on M and the centrifugal force on m mr 0 ω 2 0 = Mg or ω 0 = b. Describe the motion of m with the polar coordinates: Mg mr 0 (1) (r(t), φ(t)) = (r 0 + δr(t), ω 0 t + δφ(t)) (2) and write the equation for the radial acceleration: (m + M) r = Mg + mr(ω 0 + δ φ) 2 (3) (m + M)δ r m(δrω 2 0 + 2r 0 ω 0 δ φ) (4) m(δrω 2 0 4δrω 2 0) (5) 3mω 2 0δr (6) where in Eq. (5) we have used the conservation of angular momentum L = mr 2 (ω 0 + δ φ) allowing us to equate 0 = 2δrr 0 ω 0 + r 2 0δ φ or δ φ = 2 δr r 0 ω 0. (7) 9

Section 1-3 Humensky The negative sign in Eq. (6) implies that this perturbed motion is stable and the frequency of small oscillations is also determined by that equation: 3m ω = m + M ω 0 (8) 10

Section 1-5 Dodd 5 Damped Harmonic Motion (Dodd) 5.1 Problem A block of mass m = 200 g is attached to a horizontal spring with spring constant k = 0.85 N/m. The other end of the spring is fixed. When in motion, the system is damped by a force proportion to the velocity, with proportionality constant b = 0.2 kg/s. a. Write the differential equation of motion for the system. b. Show that the system is underdamped. Calculate the oscillation period and compare it to the natural period. c. How long does it take for the oscillating block to lose 99.9% of its total mechanical energy? How many cycles does this correspond to? By what factor does the amplitude decrease during this time? The system is now subject to a harmonic external force, F (t) = F 0 cos(ω e t), with a fixed amplitude F 0 = 1.96 N. d. Calculate the driving frequency ω e,max at which amplitude resonance (i.e. when the amplitude is maximized) occurs, and find the steadystate maximum amplitude to which this corresponds. 5.2 Solution 12

Section 1-5 Dodd

Section 1-5 Dodd

Section 1-5 Dodd