REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

Similar documents
STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Geometric coupling of scalar multiplets to D=4, N=1 pure supergravity

Lecture 7 Circuits Ch. 27

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Graphical rules for SU(N)

Learning Enhancement Team

Module 3: Element Properties Lecture 5: Solid Elements

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article:

Name: SID: Discussion Session:

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Electromagnetism Notes, NYU Spring 2018

INTRODUCTION TO COMPLEX NUMBERS

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 4: Piecewise Cubic Interpolation

New Algorithms: Linear, Nonlinear, and Integer Programming

New Exact Solutions for Static Axially Symmetric Einstein Vacuum Equations

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS

ME 501A Seminar in Engineering Analysis Page 1

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

The Number of Rows which Equal Certain Row

Two Coefficients of the Dyson Product

Haddow s Experiment:

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

perturbation theory and its applications

2.4 Linear Inequalities and Interval Notation

Introduction to Olympiad Inequalities

Katholieke Universiteit Leuven Department of Computer Science

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

International Journal of Pure and Applied Sciences and Technology

Principle Component Analysis

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

Many-Body Calculations of the Isotope Shift

Introduction to Numerical Integration Part II

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity

Strong Gravity and the BKL Conjecture

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

KULLBACK-LEIBLER DISTANCE BETWEEN COMPLEX GENERALIZED GAUSSIAN DISTRIBUTIONS

The Schur-Cohn Algorithm

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp:

p-adic Egyptian Fractions

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

COMPLEX NUMBERS INDEX

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962).

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Lecture 1. Functional series. Pointwise and uniform convergence.

Interval Valued Neutrosophic Soft Topological Spaces

Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences

Symmetries and Conservation Laws in Classical Mechanics

Coalgebra, Lecture 15: Equations for Deterministic Automata

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

2.12 Pull Back, Push Forward and Lie Time Derivatives

MCA-205: Mathematics II (Discrete Mathematical Structures)

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx,

6. Chemical Potential and the Grand Partition Function

The Evaluation Theorem

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

GAUGE THEORY ON A SPACE-TIME WITH TORSION

Nonabelian Dualization of Plane Wave Backgrounds

Effectiveness and Efficiency Analysis of Parallel Flow and Counter Flow Heat Exchangers

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

Torsion free biconformal spaces: Reducing the torsion field equations

HAMILTON-JACOBI TREATMENT OF LAGRANGIAN WITH FERMIONIC AND SCALAR FIELD

Magnetized Dust Fluid Tilted Universe for Perfect. Fluid Distribution in General Relativity

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

Applied Statistics Qualifier Examination

Things to Memorize: A Partial List. January 27, 2017

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

d 2 Area i K i0 ν 0 (S.2) d 3 x t 0ν

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

MAA 4212 Improper Integrals

Homework Solution - Set 5 Due: Friday 10/03/08

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.

TOPIC: LINEAR ALGEBRA MATRICES

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

AB INITIO DENSITY FUNCTIONAL THEORY FOR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES

Eigenvectors and Eigenvalues

PHYS 2421 Fields and Waves

4. Eccentric axial loading, cross-section core

Designing Information Devices and Systems I Discussion 8B

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

arxiv:gr-qc/ v1 14 Mar 2000

COMPLEX NUMBER & QUADRATIC EQUATION

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Lecture 3: Equivalence Relations

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION

Proportions: A ratio is the quotient of two numbers. For example, 2 3

Transcription:

THEORETICAL PHYSICS REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY V. CHIRIÞOIU 1, G. ZET 1 Poltehn Unversty Tmºor, Tehnl Physs Deprtment, Romn E-ml: vorel.hrtou@et.upt.ro Gh. Ash Tehnl Unversty, Deprtment of Physs, Iº, Romn E-ml: gzet@phys.tus.ro Reeved Otoer 10, 008 We study the regulrzton of the guge theory of grvtton usng the de Stter group s symmetry of the model. The method of generlzed zet-funton s used to relze the regulrzton nd the guge group s onsdered s n nternl symmetry. An effetve ntegrl of ton s otned nd omprson wth other results s gven. 1. INTRODUCTION Most of the exstng guge theores of grvtton dopt geometrl desrpton of grvty. Nmely, the Ponré group s onsdered prtly s spe-tme prtly s n nternl symmetry group. The lol extenson of ts spe-tme prt eomes then the dffeomorphsm group nd the guge theory s nvrnt under generl oordnte trnsformtons nd lol Lorentz frme rottons. Therefore, ths lol symmetry group s onneted wth the geometry of the spe-tme. It s possle lso to onsder spe-tme symmetres (for exmple Ponré or de Stter n ths pper) s purely nner symmetres [1, ]. Ths leds to desrpton of the guge theory of grvtton whh s n omplete nlogy wth the desrpton of nner symmetres s groups of generlzed rottons n feld spe. In ths pper we onsder the group de Stter (DS) s purely nner symmetry nd develop guge theory of grvtton. We otn n effetve ntegrl of ton whh utomtlly nludes the osmologl onstnt. The method of generlzed zet-funton s used to study the regulrzton of the theory. Pper presented t the Ntonl Conferene of Physs, Septemer 10 13, 008, Buhrest Mãgurele, Romn. Rom. Journ. Phys., Vol. 5, Nos. 9 10, P. 789 796, Buhrest, 009

790 V. Chrþou, G. Zet In Seton we ntrodue the DS guge group nd gve n n expltly form ts equton of strutures. The guge ovrnt dervtve s ntrodued s usully, onsderng the DS group s n nternl symmetry nd ntrodung the orrespondng guge felds. The strength feld s defned s the ommuttor of two guge ovrnt dervtves. The regulrzton of the theory s studed n Seton 3, usng the method of generlzed zet funton. The hnge of the prtton funton wth respet to sle trnsform s lulted for the se of spnor Dr feld ntertng wth the grvttonl feld desred y the guge potentls. Then, mnml feld guge ton, omptle wth regulrzton requrements nd nludng the osmologl onstnt, s determned. Fnlly, some onludng remrks re gven n the Seton. It s emphszed tht n our model there s no ny dret nterrelton etween grvty nd the struture of spe-tme. At quntum level t my oneptully e eser to del wth feld theoretl desrpton of grvtton free of ny geometrl spets.. DE SITTER GAUGE THEORY We onsder guge theory of grvtton hvng de Stter (DS) group s lol symmetry. Let X A, A = 1,,, 10, e ss of DS Le lger wth the orrespondng equtons of struture gven y [1] where C A B AB C X X f X (1) f C AB re the onstnts of struture whose expressons wll e gven elow [see Eq. (3)]. In order to wrte the onstnt of strutures the followng nottons for the ndex A: f C AB n ompt form, we use A 013 010031133. () Ths mens tht A n stnd for sngle ndex lke s well s for pr of ndes lke [01], [1], et. The nfntesml genertors X A re nterpreted s: X A = P (energy-momentum opertors) nd X M (ngulr momentum opertors) wth the property M M. The onstnts of struture f C AB hve then the followng expressons:

3 Grvtton wth de Stter nner symmetry 791 f f f 0 de de fd d d (3) 1 fd f d d d ef 1 e f e f e f e f f d d d d d e f where s rel prmeter, nd dg1 1 1 1 s the Mnkowsk metr of the spe-tme. In ft, here we hve deformton of the de-stter Le lger hvng s prmeter. Consderng the ontrton 0 we otn the Ponré Le lger,.e., the group DS ontrts to the Ponré group. Now we ntrodue the lol DS guge trnsformton nd the orrespondng guge ovrnt dervtve, onsderng DS s n nternl group of symmetry. As usully n ny guge theory, we hve B () together wth the followng deomposton of B wth respet to the nfntesml genertors P nd M B B P B M (5) The orrespondng genertors of the DS group n the feld spe hve the expressons: 1 P K M x x (6) where K re the trnslton de Stter genertors nd the spn ngulr momentum opertors. The lst one stsfy ommutton reltons of the sme form s M nd K hve the expresson []: K x x x x (7) We n lso deompose B wth respet to nd s follows: B d B B dx x d B (8) Introdung (8) nto Eq. () nd denotng d d d e B x x B x (9)

79 V. Chrþou, G. Zet we otn e B (10) Beuse n our model the oordnte nd DS guge trnsformtons re strtly seprted, we emphsze tht the ntroduton of B, B nd guge felds hs no mpltons on the struture of the underlyng spe-tme, whh s ssumed to e (M, ) endowed wth the Mnkowsk metr. Arevtng e d e B B (11) where must e onsdered nto the Lorentz group representton t ts on, we n wrte the guge ovrnt dervtve (10) under the smple form: d B (1) The dervtve d n e just onsdered s trnslton guge ovrnt dervtve [3]. In order to otn the tensor (feld strength opertor) F of the guge felds, we ntrodue the non-ovrnt deomposton The quntty d d H d (13) H s expressed n terms of e s: d m d m m d d H e e e e e (1) n n n where e m s the mtrx nverse of e,.e. em e m. Usng the defnton of the feld strength opertor n guge theory, we hve: F H d B B d d B d B B B (15) If we ntrodue the tensor then we n rewrte F s where R d hs the expresson T B B H (16) F d T R d (17) d d d de de e d e e e R d B d B B B B B H B (18)

5 Grvtton wth de Stter nner symmetry 793 In wht follows we wll use the shorthnd notton R (19) R d As F n (17) hs deomposton wth respet to nd d t ts n generl not only s mtrx ut lso s frst order dfferentl opertor n feld spe. But, f we suppose tht d H B B (0) tht s we tke T 0, then we n wrte Eq. (15) under the form: F R R (1) d d We n verfy tht T nd R d trnsform homogeneous under nfntesml lol DS guge trnsformtons. Then, s onsequene, the hoe T 0 s ndeed guge ovrnt sttement s mpltly ssumed ove. 3. REGULARIZATION In order to nlyze the regulrzton of our DS guge theory, we wll onsder frst the glolly DS nvrnt ton for Dr spnor feld (mtter feld): S D d x m () Then, f we wnt to otn guge (lol) nvrnt ton, we hve to hnge the usul dervtve n () y the guge ovrnt dervtve defned n Eq. (1): S 1 D d xe m (3) nd to use the new volume element 1, prtlly ntegrtng the Dr ton: where we used the hoe T 0. d xe where e e 1 det. Then, n the seond term of (3), we otn the usul form of D 1 () S d xe m

79 V. Chrþou, G. Zet 6 The ssumpton tht the nterton of the DS guge felds wth the mtter felds (n our se wth the Dr feld) n e regulrzed, mposes strong ondtons on the lssl guge feld dynms. Nmely, we know tht the hnge of the prtton funton of the whole system under reslng n e sored n ts lssl ton yeldng t most nontrvl sle dependene of the dfferent ouplngs, msses nd wve funton regulrztons. As onsequene, the hnge of one-loop mtter prtton under reslng wll llow us to onstrn the lssl guge feld dynms. The ontruton of the Dr feld to the prtton funton s gven y the followng funtonl ntegrl []: where Z eb DDe (5) S D eb Then, we my perform forml Grssmnn ntegrl n (5) nd otn: Here, M e B 1 ln det M e B Z e B e (6) M ebdd R m (7) s nmed hyperol flututon opertor nd ts expresson n (7) s otn s usully [] y squrng the Dr opertor ntrodued n Eq. (). For the se T 0 we onsder here, the opertor D n Eq. (7) s gven y the formul: D B (8) The guge feld (Le lger vlued) shll only t on the spnor ndes nd the ovrnt dervtve only on vetor ndes. The spnor ontruton to the prtton funton regulrzed t sle s gven then y [5]: 1 0 M e B Z e B e (9) where s M e B to the hyperol flututon opertor M e B nd 0 M e B s the generlzed zet funton of prmeter s ssoted s the dervtve of the generlzed zet funton wth respet to s tken for s = 0. We onsder now new sle nd determne the orrespondng hnge of Z e B. To end ths, we use the very well known property [5]

7 Grvtton wth de Stter nner symmetry 795 0 M e B 0 M e B ln 0 M e B (30) equton Then, we otn: ln 0M eb Z e B Z e B e (31) In order to otn zet funton 0 M e B s x we strt wth het kernel M K sxy (3) together wth n symptotlly s-expnson for the het kernel Ksx y of the form r x y k exp d k s s (33) k0 K sxy s xy In eq. (3) the dfferentl opertor M ts on het kernel K nd the ndex x denotes the dervtve of het kernel wth respet to x. We rememer the ft tht zet funton n four dmensons s gven y 0M eb d xdete tr x nd the oeffent funton form 1 (3) x for the Dr feld n the se T = 0 hs the 1 1 d tr D R 30 R 7 Rd 7 d 1 d Rd R R 360 5 d R 1 m R 3 m Usng equtons (3) nd (35) we otn the vlue of 0 M e B tr Next, ntrodung the vlue of 0 M e B n ntegrl over. D (35) s n the prtton funton (31) llow us to otn the nomlous terms n the spnorl se nd then to determne mnml feld guge ton omptle wth regulrzton requrements. Regulrzton of ny theory, nludng dynml guge felds, requres tht these ontrutons to the prtton funton lke (31) e expressed s lol DS guge nvrnt polynomls n the felds e nd

796 V. Chrþou, G. Zet 8 B. In our se, under the onstrnt T 0, we otn s mnml lssl ton for the guge felds: S guge eb 1 d d xe R R R R R Rd 1 16 G d d (36) Here, G s the grvttonl onstnt nd,, re the ouplng onstnts. We n see tht the DS guge group utomtlly enfores osmologl onstnt whh n our model s equl to 1, where s the deformton prmeter of the de Stter Le lger. We emphsze tht S guge n (36) s n ton for guge felds defned on the Mnkowsk spe-tme (M, ) nd s nvrnt on one hnd under lol DS guge trnsformtons, on the other hnd under glol Ponré symmetry refletng the symmetry of the underlyng spe-tme.. CONCLUSION Bsed on the hypothess tht DS s purely nner symmetry we hve developed guge theory of grvtton wth the onstnt osmologl utomtlly nluded. When the deformton prmeter 0, we otn the Ponré guge theory on the Mnkowsk spe-tme whh do not nlude the osmologl onstnt. The grvttonl nterton s medted y guge felds defned on fxed Mnkowsk spe-tme. Ther dynms hs een determned mposng onssteny requrements wth regulrzton propertes of mtter felds n the grvttonl kgrounds. In our model there s no ny dret nterrelton etween grvty nd the struture of spetme. At quntum level t my oneptully e eser to del wth feld theoretl desrpton of grvtton free of ny geometrl spets. Aknowledgments. The uthors knowledge the support of CNCSIS UEFISCSU Grnt ID-60 of the Mnstry of Eduton nd Reserh of Romn. REFERENCES 1. G. Zet, C. D. Oprºn, S. Beþ, Int. J. Mod. Phys. 15 C, 1031 1038 (00).. R. Aldrovnd, R. Beltrn Almed, J. P. Pererr, Clss. Qunt. Grv., 1385 10 (006). 3. C. Wesendnger, Clss. Qunt. Grv. 13, 681 700 (1996).. D. Bln, A. Love, Introduton to guge feld theory, IOP Pulshng, Brstol, 1993. 5. E. Frdkn, Introduton to quntum feld theory, Unversty of Illnos, 005.