Structures, host-guest chemistry and mechanism of stepwise self-assembly of M 4 L 6 tetrahedral cage complexes

Similar documents
Supplementary Material (ESI) for CrystEngComm This journal is The Royal Society of Chemistry 2010

Cages on a plane: a structural matrix for molecular 'sheets'

Electronic Supporting Information

Stimuli-Responsive Pd 2 L 4 Metallosupramolecular Cages: Towards Targeted Cisplatin Drug Delivery.

Combined Analysis of 1,3-Benzodioxoles by Crystalline Sponge X-ray Crystallography and Laser Desorption Ionization Mass Spectrometry

Supporting Information

Synthesis of a Labile Sulfur-Centred Ligand, [S(H)C(PPh 2 S) 2 ] : Structural Diversity in Lithium(I), Zinc(II) and Nickel(II) Complexes

Complexes of a porphyrin-like N 4 -donor Schiff-base macrocycle

Synthesis of two copper clusters and their catalysis towards the oxidation of benzene

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Manganese-Calcium Clusters Supported by Calixarenes

Electronic Supporting Information. for. Group 13 Complexes of Dipyridylmethane, a Forgotten Ligand in Coordination Chemistry

Benzene Absorption in a Protuberant-Grid-Type Zinc(II) Organic Framework Triggered by the Migration of Guest Water Molecules

Ordnung muss sein: heteroelement order and disorder in polyoxovanadates

Supporting Information

Reactivity within Confined Nano-spaces

Eight Zn(II) coordination networks based on flexiable. 1,4-di(1H-imidazol-1-yl)butane and different dicarboxylates:

Electronic Supplementary Information

Materi Pengayaan Polimer Koordinasi

Chapter 21: Transition Metals and Coordination Chemistry

Aluminum Complexes with Bidentate Amido Ligands: Synthesis, Structure and Performance on Ligand-Initiated Ring-Opening Polymerization of rac-lactide

Metal-directed self-assembly has recently become a major

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2.

Electronic Supplementary Information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University

Rhodamine-based Chemosensor for Hg 2+ in Aqueous Solution with a Broad ph Range and Its Application in Live Cell Imaging

Electronic Supplementary Information

Experiment 7: Understanding Crystal Structures

Stabilization of a Reactive Polynuclear Silver Carbide Cluster through the Encapsulation within Supramolecular Cage

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Supporting Information. for. Synthetic routes to [Au(NHC)(OH)] (NHC = N- heterocyclic carbene) complexes

Iridium Containing Honeycomb Delafossites by Topotactic Cation Exchange. Supplemental Material

Static and Dynamic Magnetic Properties of the Ferromagnetic Coordination Polymer [Co(NCS) 2 (py) 2 ] n

Chapter 25 Transition Metals and Coordination Compounds Part 1

metal-organic compounds

Supporting Information

1. NMR Spectrum of the prepared energetic salts. Figure S1. 1 H NMR spectrum of diammonium BNOA (6)

1. General Experiments... S2. 2. Synthesis and Experiments... S2 S3. 3. X-Ray Crystal Structures... S4 S8

Supplementary Information. Two Cyclotriveratrylene Metal-Organic Frameworks as Effective Catalysts

A Mn(III) single ion magnet with tridentate Schiff-base ligands

Supplementary Figures

Ch. 23: Transition metals and Coordination Chemistry

Local structure of the metal-organic perovskite dimethylammonium manganese(ii) formate

Nitrile Groups as Hydrogen-Bond Acceptors in a Donor-Rich Hydrogen-Bonding Network. Supplementary Information

Supplementary Information

3-D Crystal Lattice Images

Cis-Trans Isomerism Modulates the Magnetic Relaxation of. Dysprosium Single-Molecule Magnets

Chapter 23. Transition Metals and Coordination Chemistry ( 전이금속과배위화학 ) Lecture Presentation

Ionic Bonding. Chem

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry

William Cullen, Christopher A. Hunter,, and Michael D. Ward*, INTRODUCTION

The impact of metal ions on photoinduced electron-transfer. properties: four photochromic metal-organic frameworks

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines.

ELECTRONIC SUPPLEMENTARY INFORMATION

High-Connected Mesoporous Metal Organic Framework

UNIT-1 SOLID STATE. Ans. Gallium (Ga) is a silvery white metal, liquid at room temp. It expands by 3.1% on solidifica-tion.

Supporting Information. Spontaneous Si-C Bond Cleavage in (Triphos Si )-Nickel Complexes

CHEM N-3 November Transition metals are often found in coordination complexes such as [NiCl 4 ] 2. What is a complex?

Metal-Organic Frameworks Based on Rigid Ligands as Separator. Supporting Information

Electronic Supplementary Information β-ketoiminato-based Copper(II) Complexes as CVD. Precursors for Copper and Copper Oxide Layer.

Supporting Information. Accurate prediction of the structure and vibrational spectra of ionic

groups School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin Heilongjiang , China

Electrochemical Cells

Dynamics of Caged Imidazolium Cation Toward Understanding The Order-Disorder Phase Transition and Switchable Dielectric Constant

You are advised to spend an equal amount of time on each question. All questions carry an equal number of marks.

Biological Anion Receptors

SUPPORTING INFORMATION (revised)

Crystal Field Theory. 2. Show the interaction between the d-orbital and the negative point charge ligands

Supplementary material. Novel zinc(ii) metal-organic framework with diamond-like. structure: synthesis, study of thermal robustness and gas

Meso-phenyltetrabenzotriazaporphyrin based double-decker lanthanide(iii) complexes: synthesis, structure, spectral properties and electrochemistry

Crystal structure of a nickel(ii) complex with macrocyclic tetraamine

Chemistry of Transition Metals. Part 1. General Considerations

VERY SHORT ANSWER TYPE QUESTIONS (1 Mark)

Supporting Information. Pb 6 Ba 2 (BO 3 ) 5 X (X = Cl, Br): new borate halides with strong

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry

ANDHRA UNIVERSITY DEPARTMENT OF INORGANIC AND ANALYTICAL CHEMSITRY M.Sc. Previous Chemistry Syllabus, Semester I Paper- II: Inorganic Chemistry-I

EPSC501 Crystal Chemistry WEEK 5

of electrons 2) ) ) )

Supporting Information

Electronic Supplementary Information

Electronic Supplementary Information

Supporting Information

Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W.

Supporting Information

Supporting Information

Coordination Compounds. Compounds containing Transition Metals

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions

Coordination compounds - Isomerism

The structure of chloro-bis(triphenylphosphine)silver(i) dimethylsulfoxide solvate, [AgCl(PPh 3

SUPPLEMENTARY INFORMATION

A water-soluble pillar[6]arene: synthesis, host guest. chemistry, controllable self-assembly, and application in. controlled release

Selective recognition of solvent molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces**

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

a. Orange b. Green c. Red d. Yellow e. Colorless, because the crystal field splitting is so large that the absorption is shifted into the ultraviolet

Supplementary Material

CO-ORDINATION COMPOUNDS

Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair

Transcription:

Structures, host-guest chemistry and mechanism of stepwise self-assembly of M 4 L 6 tetrahedral cage complexes Benjamin R. Hall, Lauren E. Manck, Ian S. Tidmarsh, Andrew Stephenson, Brian F. Taylor, Emma J. Blaikie, Douglas A. Vander Griend * and Michael D. Ward * Supporting information Part1:Crystalstructuresof[Ni 4 (L bip ) 6 ](BF 4 ) 8 6MeNO 2 and[zn 4 (L bip ) 6 ](BF 4 ) 8 5MeNO 2 Part2:DetailsoftheUV/Visspectroscopictitrationsandsubsequentdataanalysis 1

Electronic Supplementary Material (ESI) for Dalton Transactions Part 1: Crystal structures of [Ni4(Lbip)6](BF4)8 6MeNO2 and [Zn4(Lbip)6](BF4)8 5MeNO2 Fig. S1: Structure of one of the independent cage cations of [Ni4(Lbip)6](BF4)8 6MeNO2 with two of the ligands removed for clarity, showing the encapsulated anion. Ni N distances lie in the range 2.04 2.14 Å; Ni Ni distances along the cage edges lie in the range 11.46 12.39 Å. Fig. S2: Space filling view of the above complex cation with its encapsulated anion (visible in pale green). 2

Electronic Supplementary Material (ESI) for Dalton Transactions Fig. S3: Structure of cage cations of [Zn4(Lbip)6](BF4)8 5MeNO2 looking on to the fac tris chelate metal centre Zn(1), i.e. down the (non crystallographic) C3 axis. Zn N distances lie in the range 2.07 2.26 Å; Zn Zn distances along the cage edges lie in the range 11.56 12.18 Å. 3

Part2:DetailsoftheUV/Visspectroscopictitrationsandsubsequentdataanalysis (a)titrationof0.0100mco(bf 4 ) 2 with0to2.9equivalentsofl bip at295k. OptimizationSummary: Dataat295K Non negativitywasenforcedwithtruncation(notoptimization). ActivityCoefficientsModel:None. SpecieswithFixedMolarAbsorptivityCurves:None. Solutionsignored:None. OptimizedValues(kJ/mol):ΔG 1 = 154.6(1);ΔG 2 = 148.6(1);ΔG 3 = 136.2(2); ΔG 4 = 49.8(1);ΔG 5 = 49.6(1);ΔG 6 = 31.3(2); EquilibriumRestrictedRMSResidual(7chemicalfactors):0.0007271 UnrestrictedRMSResidual(7mathematicalfactors):0.00028824 RestrictedDataReconstruction(7chemicalfactors):97.7182% UnrestrictedDataReconstruction(7mathematicalfactors):97.9795% RemainingErrorImbeddedinAbsorbanceValues:0.00029684 R²:99.9839% EstimatingmodelsensitivitytoDGvalues... EachDGvalueischangedby1kJ/molinbothdirections. TheresultingaveragechangeinRMSResidualcorrespondstohow sensitivethemodelistothatparticulardgvalue. WhenDG1isshifted,theRMSresidualincreasesby:0.085101% WhenDG2isshifted,theRMSresidualincreasesby:0.086014% WhenDG3isshifted,theRMSresidualincreasesby:0.00090134% WhenDG4isshifted,theRMSresidualincreasesby:0.34169% WhenDG5isshifted,theRMSresidualincreasesby:0.34077% 4

WhenDG6isshifted,theRMSresidualincreasesby:0.0016181% Then,eachDGvalueischangedagain,butnowtheothersareallowed toreoptimize.theresultingchangeinrmsresidualcorrespondstohow independentthatparticulardgvalueis.vanishinglysmallornegativevalues indicatethatonlythedifferencebetweendgvaluesisknownaccurately. WhenDG1isshifted,theRMSresidualincreasesby:3.9515e 012% WhenDG2isshifted,theRMSresidualincreasesby:7.1351e 011% WhenDG3isshifted,theRMSresidualincreasesby:2.4244e 010% WhenDG4isshifted,theRMSresidualincreasesby: 1.3088e 010% WhenDG5isshifted,theRMSresidualincreasesby: 1.0085e 010% WhenDG6isshifted,theRMSresidualincreasesby: 4.4883e 012% 5

(b)titrationof0.0100mco(bf 4 ) 2 with0to3.1equivalentsofl bip at308k. OptimizationSummary: Dataat308K Non negativitywasenforcedwithtruncation(notoptimization). ActivityCoefficientsModel:None. SpecieswithFixedMolarAbsorptivityCurves:None. Solutionsignored:None. OptimizedValues(kJ/mol):ΔG 1 = 166(2);ΔG 2 = 162(1);ΔG 3 = 154(1);ΔG 4 = 57.8(8); ΔG 5 = 62.3(8);ΔG 6 = 6.2(3); EquilibriumRestrictedRMSResidual(7chemicalfactors):0.00078715 UnrestrictedRMSResidual(7mathematicalfactors):0.00026202 RestrictedDataReconstruction(7chemicalfactors):97.9687% UnrestrictedDataReconstruction(7mathematicalfactors):98.2729% RemainingErrorImbeddedinAbsorbanceValues:0.00033348 R²:99.9813% 6

EstimatingmodelsensitivitytoDGvalues... EachDGvalueischangedby1kJ/molinbothdirections. TheresultingaveragechangeinRMSResidualcorrespondstohow sensitivethemodelistothatparticulardgvalue. WhenDG1isshifted,theRMSresidualincreasesby:0.023813% WhenDG2isshifted,theRMSresidualincreasesby:0.087707% WhenDG3isshifted,theRMSresidualincreasesby:0.050783% WhenDG4isshifted,theRMSresidualincreasesby:0.11596% WhenDG5isshifted,theRMSresidualincreasesby:0.11596% WhenDG6isshifted,theRMSresidualincreasesby:0.014084% Then,eachDGvalueischangedagain,butnowtheothersareallowed toreoptimize.theresultingchangeinrmsresidualcorrespondstohow independentthatparticulardgvalueis.vanishinglysmallornegativevalues indicatethatonlythedifferencebetweendgvaluesisknownaccurately. WhenDG1isshifted,theRMSresidualincreasesby:2.1554e 009% WhenDG2isshifted,theRMSresidualincreasesby: 5.852e 009% WhenDG3isshifted,theRMSresidualincreasesby:9.7575e 009% WhenDG4isshifted,theRMSresidualincreasesby:9.7845e 009% WhenDG5isshifted,theRMSresidualincreasesby:9.7867e 009% WhenDG6isshifted,theRMSresidualincreasesby:0.013326% 7

Titrationof0.0100MCo(BF 4 ) 2 with0to2.9equivalentsofl bip at283k. OptimizationSummary: Dataat283K Non negativitywasenforcedwithtruncation(notoptimization). ActivityCoefficientsModel:None. SpecieswithFixedMolarAbsorptivityCurves:None. Solutionsignored:None. OptimizedValues(kJ/mol):ΔG 1 = 153(3);ΔG 2 = 106.5(1);ΔG 3 = 101.2(1); ΔG 4 = 52.8(5);ΔG 5 = 43.5(1);ΔG 6 = 41.2(1); EquilibriumRestrictedRMSResidual(7chemicalfactors):0.00097395 UnrestrictedRMSResidual(7mathematicalfactors):0.00034412 RestrictedDataReconstruction(7chemicalfactors):97.7633% UnrestrictedDataReconstruction(7mathematicalfactors):98.1881% RemainingErrorImbeddedinAbsorbanceValues:0.00041802 R²:99.9644% EstimatingmodelsensitivitytoDGvalues... EachDGvalueischangedby1kJ/molinbothdirections. TheresultingaveragechangeinRMSResidualcorrespondstohow sensitivethemodelistothatparticulardgvalue. WhenDG1isshifted,theRMSresidualincreasesby:4.5722e 009% WhenDG2isshifted,theRMSresidualincreasesby:0.078127% WhenDG3isshifted,theRMSresidualincreasesby:0.078127% WhenDG4isshifted,theRMSresidualincreasesby:0.020215% WhenDG5isshifted,theRMSresidualincreasesby:3.9349% WhenDG6isshifted,theRMSresidualincreasesby:3.7672% Then,eachDGvalueischangedagain,butnowtheothersareallowed toreoptimize.theresultingchangeinrmsresidualcorrespondstohow independentthatparticulardgvalueis.vanishinglysmallornegativevalues 8

indicatethatonlythedifferencebetweendgvaluesisknownaccurately. WhenDG1isshifted,theRMSresidualincreasesby: 1.1581e 008% WhenDG2isshifted,theRMSresidualincreasesby: 1.644e 008% WhenDG3isshifted,theRMSresidualincreasesby: 1.6616e 008% WhenDG4isshifted,theRMSresidualincreasesby: 1.7767e 008% WhenDG5isshifted,theRMSresidualincreasesby: 1.6674e 008% WhenDG6isshifted,theRMSresidualincreasesby: 1.6973e 008% 9