Coulomb Correction to Density and Temperature of Fermions and Bosons from Quantum Fluctuations

Similar documents
High order corrections to density and temperature of fermions and bosons from quantum fluctuations and the CoMD-α Model

Density and temperature of fermions and bosons from quantum fluctuations

How much cooler would it be with some more neutrons?

How Much Cooler Would It Be With Some More Neutrons? Asymmetry Dependence of the Nuclear Caloric Curve

Clusterization and the Symmetry Energy in Low Density Nuclear Matter

PROTON-PROTON FEMTOSCOPY AND ACCESS TO DYNAMICAL SOURCES AT INTERMEDIATE ENERGIES

Symmetry energy of dilute warm nuclear matter

Neutron-rich rare isotope production with stable and radioactive beams in the mass range A ~ at 15 MeV/nucleon

Few-particle correlations in nuclear systems

Searching for high-spin toroidal isomers in collisions induced by α-conjugate nuclei

which escape from the nucleus cool down the residue and thermal equilibrium cannot be maintained. In order to avoid these diculties, in the present si

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

Stochastic Mean Field (SMF) description TRANSPORT Maria Colonna INFN - Laboratori Nazionali del Sud (Catania)

Heavy&ion*collisions:*Direct*and*indirect* probes*of*the*density* and*temperature*dependence*of*e sym * * S. Yennello Texas A&M University

Molecular Structures in Slow Nuclear Collisions

Correlation functions and characterization of emitting sources. A. Chbihi GANIL

Equation-of-State of Nuclear Matter with Light Clusters

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

Size Matters: Origin of Binomial Scaling in Nuclear. Fragmentation Experiments. Abstract

Nuclear matter EoS including few-nucleon correlations

Betty Tsang Subal Das Gupta Festschrift McGill University, Montreal Dec 4, 2004

Isotopic Dependence of the Caloric Curve

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

(December 15, 1995) Abstract. We investigate the Equation of State (EOS) of classical systems having 300

IMF production and symmetry energy in heavy ion collisions near Fermi energy

Theodoros Gaitanos ECT*,

Proximity Decay and Tidal Effects

THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

Measurement of the plasma astrophysical S factor for the 3 He(D, p) 4 He reaction in exploding molecular clusters

14 Lecture 14: Early Universe

Nuclear Alpha-Particle Condensation

Nuclear Structure and Reactions using Lattice Effective Field Theory

Calculations for Asymmetric Nuclear matter and many-body correlations in Semi-classical Molecular Dynamics

How much cooler would it be with some more neutrons? Asymmetry Dependence of the Nuclear Caloric Curve. Alan McIntosh, Texas A&M University

Nuclear equation of state with realistic nuclear forces

Isoscaling, isobaric yield ratio and the symmetry energy: interpretation of the results with SMM

Nonstatistical fluctuations for deep inelastic processes

Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Physics of the hot universe!

Semi-Classical perturbation theory Coulomb only First-order most used

Dissipative nuclear dynamics

Comparison of heavy-ion transport simulations: Collision integral in a box

α Particle Condensation in Nuclear systems

Medium polarization effects and pairing interaction in finite nuclei

Astronomy, Astrophysics, and Cosmology

c E If photon Mass particle 8-1

Form Factors with Electrons and Positrons

Nuclear Binding Energy

Investigation of Nuclear Ground State Properties of Fuel Materials of 232 Th and 238 U Using Skyrme- Extended-Thomas-Fermi Approach Method

Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Thermal dileptons as fireball probes at SIS energies

Extracting symmetry energy information with transport models

1) K. Huang, Introduction to Statistical Physics, CRC Press, 2001.

PHYS 3313 Section 001 Lecture # 24

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei. scattered particles. detector. solid angle. target. transmitted particles

Part II Statistical Physics

Van der Waals equation: event-by-event fluctuations, quantum statistics and nuclear matter

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542)

Heavy-ion reactions and the Nuclear Equation of State

The National Superconducting Cyclotron State University

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011

Microscopic description of fission in the neutron-deficient Pb region

Critical like behavior in the lattice gas model

Heavy-Quark Transport in the QGP

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA

Hyperon equation of state for core-collapse simulations based on the variational many-body theory Hajime Togashi Outline

Quantum Monte Carlo calculations of neutron and nuclear matter

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective

INFORMATION ON THE NUCLEAR EQUATION OF STATE FROM MULTIFRAGMENTATION STUDIES

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

Signatures for multifragmentation in spallation reactions

Nature of low-energy dipole states in exotic nuclei

Isospin influence on Fragments production in. G. Politi for NEWCHIM/ISODEC collaboration

Investigation of hadronic matter properties with heavy ion collisions Particle production and flow from SIS to FAIR. Yvonne Leifels GSI

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Topics of interest for Must2 in HIC

Principalities Charged-π Yields, Theory & Expt Incompressibility Conclusions. Pions in pbuu. Pawel Danielewicz

Measurement of the neutron spectroscopic factor in 10 Be

Nuclear Physics from Lattice Effective Field Theory

SMR/ International Workshop on QCD at Cosmic Energies III. 28 May - 1 June, Lecture Notes. E. Zabrodin University of Oslo Oslo, Norway

Constraining the QCD equation of state in hadron colliders

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

Sunday Monday Thursday. Friday

Role of van der Waals interactions in hadron systems: from nuclear matter to lattice QCD

Instead, the probability to find an electron is given by a 3D standing wave.

The nuclear many- body problem: an open quantum systems perspec6ve. Denis Lacroix GANIL- Caen

A new approach to detect hypernuclei and isotopes in the QMD phase space distribution at relativistic energies

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino

Reaction Cross Sections and Nucleon Density Distributions of Light Nuclei. Maya Takechi

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

How to do C.C. calculations if there is only limited experimental information on intrinsic degrees of freedom?

Introduction to particle physics Lecture 3: Quantum Mechanics

Transcription:

Coulomb Correction to Density and Temperature of Fermions and Bosons from Quantum Fluctuations Hua Zheng a, Gianluca Giuliani a and Aldo Bonasera a,b! a)cyclotron Institute, Texas A&M University! b)lns-infn, Catania-Italy. * Trento 2014 1

Outline Motivations Methods to determine density Conventional thermometers New thermometer Applications to F&B Summary 2

Methods to determine the density SAHA s equation ρ = N V Coalescence model Two particles correlation Guggenheim approach Quantum fluctuation 6

Methods to determine the density SAHA s equation Justified for very low density region and high temperature S. Albergo et al., IL NUOVO CIMENTO, vol 89 A, N. 1 (1985) S.Shlomo, G. Ropke, J.B. Natowitz et al., PRC 79, 034604(2009) 7

Methods to determine the density Coalescence model! A. Mekjian, PRL Vol 38, No 12 (1977) L. Qin, K. Hagel, R. Wada, J.B. Natowitz et al., PRL 8, 172701(2012) K. Hagel, R. Wada, L. Qin, J.B. Natowitz et al., PRL 8, 062702(2012) 8

Conventional thermometers The slopes of kinetic energy spectra (Tkin) Discrete state population ratios of selected clusters (Tpop) Double isotopic yield ratios (Td) S. Albergo et al.,il Nuovo Cimento, Vol 89A, N. 1 (1985) M. B. Tsang et al., PRC volume 53, (1996), R57 J. Pochodzalla et al., CRIS, 96, world scientific, A.Bonasera et al., IL Nuovo Cimento, Vol 23, p1, 2000 A. Kelic, J.B. Natowitz, K.H. Schmidt, EPJA 30, 203 (2006) 11

Conventional thermometers The slopes of kinetic energy spectra (Tkin) Discrete state population ratios of selected clusters (Tpop) Double isotopic yield ratios (Td) S. Albergo et al.,il Nuovo Cimento, Vol 89A, N. 1 (1985) M. B. Tsang et al., PRC volume 53, (1996), R57 J. Pochodzalla et al., CRIS, 96, world scientific, A.Bonasera et al., IL Nuovo Cimento, Vol 23, p1, 2000 A. Kelic, J.B. Natowitz, K.H. Schmidt, EPJA 30, 203 (2006) All of them are based on the Maxwell- Boltzmann distribution. No quantum effect has been considered so far. 11

Nucl. Phys. A 843 (20) 1 12

Nucl. Phys. A 843 (20) 1 A Quadrupole is defined in the direction transverse to the beam axis 12

Nucl. Phys. A 843 (20) 1 A Quadrupole is defined in the direction transverse to the beam axis 2 2 Q xy =px -p y 12

Nucl. Phys. A 843 (20) 1 A Quadrupole is defined in the direction transverse to the beam axis Its variance is 2 2 Q xy =px -p y 12

Nucl. Phys. A 843 (20) 1 A Quadrupole is defined in the direction transverse to the beam axis 2 2 Q xy =px -p y Its variance is σ = d p(p -p ) f(p) 2 3 2 2 2 xy x y When a classical Maxwell-Boltzmann distribution of particles at temperature is assumed T cl σ 2 2 xy =N (2 mt cl ) 12

Density and temperature of fermions from quantum fluctuations Quadrupole fluctuations: Fermi Dirac distribution σ 2 2 xy =N (2mT) F QC % 4 T 7 T T & 35 ε 6 ε ε -2 2 2 4 ( ) [1+ π ( ) +O( ) ] ( low T approx) 2 f f f = N (2mT) ' & T 1.71 + 0.2( ) 1 ( higher order) &( ε f Wolfgang Bauer, PRC, Volume 51, Number 2 (1995) H. Zheng, A. Bonasera, PLB, 696(2011) 178-181 H. Zheng, A. Bonasera, PRC 86, 027602 (2012) 13

Density and temperature of fermions from quantum fluctuations Quadrupole fluctuations: Fermi Dirac distribution σ 2 2 xy =N (2mT) F QC % 4 T 7 T T & 35 ε 6 ε ε -2 2 2 4 ( ) [1+ π ( ) +O( ) ] ( low T approx) 2 f f f = N (2mT) ' & T 1.71 + High T 0.2( ) 1 1 ( higher order) &( ε f Wolfgang Bauer, PRC, Volume 51, Number 2 (1995) H. Zheng, A. Bonasera, PLB, 696(2011) 178-181 H. Zheng, A. Bonasera, PRC 86, 027602 (2012) 13

Density and temperature of fermions from quantum fluctuations Quadrupole fluctuations: Fermi Dirac distribution σ 2 2 xy =N (2mT) F QC % 4 T 7 T T & 35 ε 6 ε ε -2 2 2 4 ( ) [1+ π ( ) +O( ) ] ( low T approx) 2 f f f = N (2mT) ' & T 1.71 + Multiplicity fluctuations: High T 0.2( ) 1 1 ( higher order) &( ε f 2 2 N ( Δ N) ( N) T ( ) T, V, x Δ = = µ N Wolfgang Bauer, PRC, Volume 51, Number 2 (1995) H. Zheng, A. Bonasera, PLB, 696(2011) 178-181 H. Zheng, A. Bonasera, PRC 86, 027602 (2012) 13

Density and temperature of fermions from quantum fluctuations Quadrupole fluctuations: Fermi Dirac distribution σ 2 2 xy =N (2mT) F QC % 4 T 7 T T & 35 ε 6 ε ε -2 2 2 4 ( ) [1+ π ( ) +O( ) ] ( low T approx) 2 f f f = N (2mT) ' & T 1.71 + Multiplicity fluctuations: " 2 T x # 3 = $ ε 0.442 f # + + #& (1 x) High T 0.2( ) 1 1 ( higher order) &( ε f 2 2 N ( Δ N) ( N) T ( ) T, V, x Δ = = µ ( low T approx) 2 0.442 0.345x 0.12 x ( higher order) 0.656 N Wolfgang Bauer, PRC, Volume 51, Number 2 (1995) H. Zheng, A. Bonasera, PLB, 696(2011) 178-181 H. Zheng, A. Bonasera, PRC 86, 027602 (2012) 13

Density and temperature of fermions from quantum fluctuations Quadrupole fluctuations: Fermi Dirac distribution σ 2 2 xy =N (2mT) F QC % 4 T 7 T T & 35 ε 6 ε ε -2 2 2 4 ( ) [1+ π ( ) +O( ) ] ( low T approx) 2 f f f = N (2mT) ' & T 1.71 + Multiplicity fluctuations: " 2 T x # 3 = $ ε 0.442 f # + + #& (1 x) High T 0.2( ) 1 1 ( higher order) &( ε f 2 2 N ( Δ N) ( N) T ( ) T, V, x Δ = = µ Low T ( low T approx) 2 0.442 0.345x 0.12 x ( higher order) 0.656 0.635x N Wolfgang Bauer, PRC, Volume 51, Number 2 (1995) H. Zheng, A. Bonasera, PLB, 696(2011) 178-181 H. Zheng, A. Bonasera, PRC 86, 027602 (2012) 13

Density and temperature of fermions from quantum fluctuations H. Zheng, A. Bonasera, PLB, 696(2011) 178-181 H. Zheng, A. Bonasera, PRC 86, 027602 (2012) 14

Density and temperature of fermions from quantum fluctuations Density: ε f ρ = 36( ) ρ 0 2/3 H. Zheng, A. Bonasera, PLB, 696(2011) 178-181 H. Zheng, A. Bonasera, PRC 86, 027602 (2012) 14

Density and temperature of fermions from quantum fluctuations Density: ε f ρ = 36( ) ρ 0 2/3 Testing the method H. Zheng, A. Bonasera, PLB, 696(2011) 178-181 H. Zheng, A. Bonasera, PRC 86, 027602 (2012) 14

Density and temperature of fermions from quantum fluctuations Density: ε f ρ = 36( ) ρ 0 2/3 Testing the method u u CoMD simulations:! Experimental data 40 40 Ca+ Ca, b = 1fm, t = 00fm/c H. Zheng, A. Bonasera, PLB, 696(2011) 178-181 H. Zheng, A. Bonasera, PRC 86, 027602 (2012) 14

GEMINI statistical model decay simulations. First decay step H.Zheng et al. submitted(2014).

GEMINI statistical model decay simulations. First decay step S=2aT;a=A/15=A/k_0(rho/rho_0)^(-2/3) 1/MeV; A=80 Z=40 H.Zheng et al. submitted(2014).

GEMINI statistical model decay simulations. First decay step S=2aT;a=A/15=A/k_0(rho/rho_0)^(-2/3) 1/MeV; A=80 Z=40 Double ratio: pnth &dtha H.Zheng et al. submitted(2014).

GEMINI statistical model decay simulations. First decay step S=2aT;a=A/15=A/k_0(rho/rho_0)^(-2/3) 1/MeV; A=80 Z=40 Double ratio: pnth &dtha 25 20 2 4 6 8 12 14 16 18 20 k 0 =k infinity =7.3 MeV 2 4 6 8 12 14 16 18 20 25 k 0 =k infinity =15 MeV 20 T(MeV) 15 15 5 5 0 0-2 -2 i -3-3 -4-4 -5 2 4 6 8 12 14 16 18 20 E*/A(MeV) 2 4 6 8 12 14 16 18 20 E*/A(MeV) -5 H.Zheng et al. submitted(2014).

GEMINI statistical model decay simulations. First decay step S=2aT;a=A/15=A/k_0(rho/rho_0)^(-2/3) 1/MeV; A=80 Z=40 Double ratio: pnth &dtha Classical&Quantum fluctuations p&n 25 20 2 4 6 8 12 14 16 18 20 k 0 =k infinity =7.3 MeV 2 4 6 8 12 14 16 18 20 25 k 0 =k infinity =15 MeV 20 T(MeV) 15 15 5 5 0 0-2 -2 i -3-3 -4-4 -5 2 4 6 8 12 14 16 18 20 E*/A(MeV) 2 4 6 8 12 14 16 18 20 E*/A(MeV) -5 H.Zheng et al. submitted(2014).

GEMINI statistical model decay simulations. First decay step S=2aT;a=A/15=A/k_0(rho/rho_0)^(-2/3) 1/MeV; A=80 Z=40 Double ratio: pnth &dtha Classical&Quantum fluctuations p&n 25 20 2 4 6 8 12 14 16 18 20 k 0 =k infinity =7.3 MeV 2 4 6 8 12 14 16 18 20 25 k 0 =k infinity =15 MeV 20 25 20 2 4 6 8 12 14 16 18 20 k 0 =k infinity =7.3 MeV 2 4 6 8 12 14 16 18 20 2 k 0 =k infinity =15 MeV 2 T(MeV) 15 15 T(MeV) 15 1 1 5 5 5 5 0 0 0 1 0 1-2 -2-1 1 i -3-3 i -4-4 -2 1-5 2 4 6 8 12 14 16 18 20 E*/A(MeV) 2 4 6 8 12 14 16 18 20 E*/A(MeV) -5 H.Zheng et al. submitted(2014). 2 4 6 8 12 14 16 18 20 E*/A(MeV) 2 4 6 8 12 14 16 18 20 E*/A(MeV)

1 2 4 6 8 12 14 16 18 2 4 6 8 12 14 16 18 1-1 -1-2 -2 i -3-3 -4-4 -5 0 k 0 =k infinity =7.3 MeV k 0 =k infinity =15 MeV 0-5 ) -0.2-0.2 ( p + n )/( -0.4-0.4 p - n -0.6-0.6-0.8-0.8-1 2 4 6 8 12 14 16 18 T(MeV) 2 4 6 8 12 14 16 18-1 T(MeV) 11

Exp. data (G.Bonasera et al.) in preparation 12

Density and temperature of fermions from quantum fluctuations B. C. Stein et al, arxiv: 1111.2965v1 H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 15

Density and temperature of fermions from quantum fluctuations S32+Sn112 B. C. Stein et al, arxiv: 1111.2965v1 H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 15

14

Density and temperature of bosons from quantum fluctuations Quadrupole fluctuations: Bose-Einstein distribution Multiplicity fluctuations: N Δ = = µ 2 ( N) T ( ) T, V NT ρκt, H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 16

Density and temperature of bosons from quantum fluctuations Quadrupole fluctuations: Bose-Einstein distribution Multiplicity fluctuations: Density: N Δ = = µ 2 ( N) T ( ) T, V NT ρκt, H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 16

Density and temperature of bosons from quantum fluctuations H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 17

Density and temperature of bosons from quantum fluctuations 18

Density and temperature of bosons from quantum fluctuations N Δ = = µ 2 ( N) T ( ) T, V NT ρκ T 18

Multiplicity fluctuation using Landau s phase transition theory H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 19

The results of Fermions and bosons We introduce the Coulomb correction 20

Coulomb correction Similar to the density determination of the source in electron-nucleus scattering The distribution function is modified 21

Coulomb correction 22

Coulomb correction results for Fermions Add another figure rhop/rhon 25

T (MeV) 12 =0.065 m s m s =0.115 8 6 m s =0.165 m s =0.215 ms=(n-z)s/as 4 2 0-1 -0.5 0 0.5 1 ( - )/( + J.Mabiala priv. comm. n p n ) p 23

T (MeV) 12 =0.065 m s m s =0.115 8 6 m s =0.165 m s =0.215 ms=(n-z)s/as Two fluids p&n, different densities 4 2 0-1 -0.5 0 0.5 1 ( - )/( + J.Mabiala priv. comm. n p n ) p 23

T (MeV) 12 =0.065 m s m s =0.115 8 6 m s =0.165 m s =0.215 ms=(n-z)s/as Two fluids p&n, different densities Order parameter? 4 2 0-1 -0.5 0 0.5 1 ( - )/( + J.Mabiala priv. comm. n p n ) p 23

T (MeV) 12 =0.065 m s m s =0.115 8 6 m s =0.165 m s =0.215 ms=(n-z)s/as Two fluids p&n, different densities Order parameter? 4 2 0-1 -0.5 0 0.5 1 ( - )/( + J.Mabiala priv. comm. n p n ) p 23

Coulomb correction for Bosons (T<Tc) 23

Coulomb correction for Bosons (T<Tc) 24

Coulomb correction results for Bosons 26

27

27

P.Marini et al. 27

P.Marini et al., Circumstantial Evidence of Boson/Fermion mixtures in Nuclei 28

29

30

Bose condensate in trapped fermions and bosons mixture 36

Summary ØWe reviewed the three conventional thermometers! ØA new thermometer to take into account the quantum effect of fermions and bosons is proposed! ØSome evidences of quantum nature of fermions and bosons are found in the model and experimental data! ØMore investigations need to be done 27

33

Thank you! 28

Experimental data J. Mabiala et. al., submitted to PRL 29 K. Huang, Statistical Mechanics (2Ed, Wiley, 1987)

Experimental data J. Mabiala et. al., submitted to PRL 29 K. Huang, Statistical Mechanics (2Ed, Wiley, 1987)

Experimental data J. Mabiala et. al., submitted to PRL 29 K. Huang, Statistical Mechanics (2Ed, Wiley, 1987)

Experimental data J. Mabiala et. al., submitted to PRL 29 K. Huang, Statistical Mechanics (2Ed, Wiley, 1987)

Quantum nature phenomena 3

Quantum nature phenomena Cosmic microwave background radiation http://asd.gsfc.nasa.gov/arcade/cmb_spectrum.html 3

Quantum nature phenomena Cosmic microwave background radiation Specific heat of Au http://asd.gsfc.nasa.gov/arcade/cmb_spectrum.html Phys Rev 98, 1699 (1955) 3

Quantum nature phenomena Cosmic microwave background radiation Specific heat of Au http://asd.gsfc.nasa.gov/arcade/cmb_spectrum.html Phys Rev 98, 1699 (1955) C. Tournmanis s lecture 3

Methods to determine the density SAHA s equation ρ = N V Coalescence model Two particles correlation Guggenheim approach Quantum fluctuation 6

Trapped Fermions/Bosons systems 4

Trapped Fermions/Bosons systems Li6 T / T f = 0.6 T / T f = 0.21 PRL 5, 040402 (20) 4

Trapped Fermions/Bosons systems Li6 T / T f = 0.6 T / T f = 0.21 Rb87 PRL 5, 040402 (20) PRL 96, 130403 (2006) 4

Other works B. Borderie et al., arxiv: 1207.6085v1 30

Nuclear collision Measured in experiment event by event:! Mass (A) Charge (Z) Yield Velocity Angular distribution Time correlation The physical quantities in EoS:!! Pressure (P) Volume (V) or Density ( ) Temperature (T) 5

Nuclear collision Measured in experiment event by event:! Mass (A) Charge (Z) Yield Velocity Angular distribution Time correlation The physical quantities in EoS:!! Pressure (P) Volume (V) or Density ( ) Temperature (T) 5

Density and temperature of fermions from quantum fluctuations H. Zheng, A. Bonasera, PRC 86, 027602 (2012) J. B. Natowitz et al., PRC Volume 65, 034618 31

Methods to determine the density Two particles correlation S.E. Koonin, Phys. Lett Vol 70B, No 1 (1977) S. Pratt, M.B. Tsang, PRC Vol 36, No 6 (1987) W.G. Gong, W. Bauer, C.K. Gelbke and S. Pratt, PRC Vol 43, No 2 (1991) 9

Methods to determine the density Guggenheim formulae E.A. Guggenheim, J. Chem. Phys Vol 13, No7 (1945) T. Kubo, M. Belkacem. V. Latora, A. Bonasera, Z. Phys. A. 352, 145 (1995) P. Finocchiaro et al., NPA 600, 236 (1996) J.B. Elliott et al., PRL Vol 88, No4 (2002), J.B. Elliott et al., PRC 87, 054622 (2013) L.G. Moretto et al., J. Phys. G: Nucl. Part. Phys. 38, 1131 (2011) J.B. Natowitz et al., Int. J. Mod. Phys. E Vol 13, No1, 269 (2004)

Why Boson condensate? ØLarge production of alpha particles in experiment! ØEvents with large multiplicity alpha-like or d-like fragments are found in experiment! ØThe light nuclei display the alpha-structure, (12C)! ØRecent experimental data and microscopic quantum statistical model suggests there is a boson condensate to reproduce the data (Joe)! ØThe configuration of nuclei can be alpha clusters 32

Some relevant references about boson condensate 33

Some relevant references about boson condensate 33

Some relevant references about boson condensate 33

Some relevant references about boson condensate 33

Some relevant references about boson condensate 33

Some relevant references about boson condensate 33

Some relevant references about boson condensate 33

Some relevant references about boson condensate 33

CoMD α Pauli principle M. Papa et al., Journal of computational physics 208 (2005) 403-415 H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 34

CoMD α Pauli principle M. Papa et al., Journal of computational physics 208 (2005) 403-415 H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 34

CoMD α Pauli principle M. Papa et al., Journal of computational physics 208 (2005) 403-415 H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 34

CoMD α Pauli principle M. Papa et al., Journal of computational physics 208 (2005) 403-415 H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 34

CoMD α α1 α 2 Ξ = 1 e ij Vc 1 σπρvij dt E Π = (1 + f )(1 + f ) Π ' > Π k α1 α 2 Pauli principle Alpha-alpha collision M. Papa et al., Journal of computational physics 208 (2005) 403-415 H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 34

Density and temperature of bosons from quantum fluctuations H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 35

Density and temperature of bosons from quantum fluctuations H. Zheng, G. Giuliani and A. Bonasera, NPA 892 (2012) 43-57 35