The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

Similar documents
On the Landau gauge three-gluon vertex

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

arxiv: v1 [hep-ph] 17 Apr 2014

Recent results for propagators and vertices of Yang-Mills theory

QCD Phases with Functional Methods

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil

QCD at finite density with Dyson-Schwinger equations

On bound states in gauge theories with different matter content

Functional RG methods in QCD

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

QCD Green Functions:

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices

QCD at finite density with Dyson-Schwinger equations

Gluon Propagator and Gluonic Screening around Deconfinement

Bethe Salpeter studies of mesons beyond rainbow-ladder

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

Chiral symmetry breaking in continuum QCD

Confinement from Correlation Functions

Chiral symmetry breaking in continuum QCD

Analytical study of Yang-Mills theory from first principles by a massive expansion

Phase transitions in strong QED3

Effects Of Anisotropy in (2+1)-dimensional QED

Infra-Red. Infra-red dog

(De-)Confinement from QCD Green s functions

Hadronic light-by-light from Dyson-Schwinger equations

The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

Introduction to Strong Interactions and the Hadronic Spectrum

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

HLbl from a Dyson Schwinger Approach

arxiv:hep-lat/ v1 15 Jun 2004

Green s Functions and Topological Configurations

Chiral symmetry breaking in continuum QCD

arxiv: v1 [hep-th] 7 Nov 2018

arxiv: v1 [hep-lat] 31 Jan 2011

Unquenched Lattice Landau Gauge QCD Simulation

Properties of gauge orbits

Chiral Symmetry Breaking. Schwinger-Dyson Equations

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Infrared properties of Landau propagators at finite temperature from very large lattices

Faddeev equations: a view of baryon properties

A Dyson-Schwinger equation study of the baryon-photon interaction.

On the infrared behaviour of QCD Green functions in the Maximally Abelian gauge

Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons a

PoS(Baldin ISHEPP XXII)015

Fit to Gluon Propagator and Gribov Formula

arxiv: v1 [hep-ph] 22 Aug 2014

arxiv: v1 [hep-lat] 1 May 2011

Quark tensor and axial charges within the Schwinger-Dyson formalism

The static potential in the Gribov-Zwanziger Lagrangian

Espansione a grandi N per la gravità e 'softening' ultravioletto

Confined chirally symmetric dense matter

Three-dimensional Yang-Mills theory as a testbed for truncations of Dyson-Schwinger equations

arxiv: v1 [hep-lat] 28 Nov 2018

arxiv: v1 [hep-lat] 15 Nov 2016

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Non-perturbative momentum dependence of the coupling constant and hadronic models

arxiv:hep-th/ v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY

A Solution to Coupled Dyson Schwinger Equations for Gluons and Ghosts in Landau Gauge

A study of π and ρ mesons with a nonperturbative

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation.

Quark-gluon interactions in QCD

Particle Physics at the University of Graz

arxiv:hep-ph/ v2 8 Mar 2006

P-ADIC STRINGS AT FINITE TEMPERATURE

Mesonic and nucleon fluctuation effects at finite baryon density

Many faces of the Landau gauge gluon propagator at zero and finite temperature

Gernot Eichmann. The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon

A Light Dilaton in Walking Gauge Theories. arxiv: , PRD Yang Bai, TA

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

Critical Region of the QCD Phase Transition

Locating QCD s critical end point

QCD phase structure from the functional RG

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

QCD from quark, gluon, and meson correlators

Influence of broken flavor and C and P symmetry on the quark propagator

Deconfinement and Polyakov loop in 2+1 flavor QCD

γnn Electrocouplings in Dyson-Schwinger Equations

Hadronic contributions to the muon g-2

Quarks and gluons in a magnetic field

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Structure of the fermion propagator in QED3 3

Non-perturbative Study of Chiral Phase Transition

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle,

Local Quantum Field Theory and Confinement in QCD

arxiv: v1 [hep-lat] 14 Jan 2010

Tetraquarks and Goldstone boson physics

H-dibaryon in Holographic QCD. Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa)

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Transcription:

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut für Kernphysik, Technische Universität Darmstadt September 25, 2007 SIC!QFT ÖPG FAKT-Tagung, Langenlois Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 1/14

Table of Contents 1 Introduction Infrared QCD Methods in the Infrared Regime 2 Infrared Behavior: Power Counting Propagators Vertices 3 Numerical Results Tensor Components 4 Summary Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 2/14

Infrared QCD Infrared (IR) is dierent from UV, where perturbation theory works due to asymptotic freedom. IR phenomena: dynamical chiral symmetry breaking and connement Complementing methods are needed: Lattice vs. functional methods as Dyson-Schwinger equations (DSEs) and renormalization group A rst step in understanding connement is to consider only ghosts and gluons, i.e. Yang-Mills (YM) theory. Connement in YM theory (Landau gauge): Gribov-Zwanziger and Kugo-Ojima scenario Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 3/14

Dyson-Schwinger Approach Equations of motion for Green functions Describe the theory completely, including non-perturbative eects Innite tower of coupled integral equations Propagators: can be calculated using approximations for the vertices In the IR a solution from the complete system for the propagators and vertices is possible in form of power laws. Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 4/14

Infrared Behavior Gluon and ghost propagators: dressing functions show power-like behavior D µν (p) = ( ) δ µν p µp ν Z(p), p 2 p 2 D G (p) = G(p) p 2 Z(p) IR = A (p 2 ) α, G(p) IR = B (p 2 ) β Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 5/14

Infrared Behavior Gluon and ghost propagators: dressing functions show power-like behavior D µν (p) = ( ) δ µν p µp ν Z(p), p 2 p 2 D G (p) = G(p) p 2 Z(p) IR = A (p 2 ) α, G(p) IR = B (p 2 ) β Vertices: dressing functions show power-like behavior, but more complicated tensor structure n Γ µνρ... (p 1, p 2, p 3,... ) = H i (p 1, p 2, p 3,... )τ µνρ... (i) i=0 H i (p 2 1, p 2 2, p 2 3,...) (p 2 1 )δ H i ( p 2 2 p 2 1 ), p2 3,... ; δ p1 2 Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 5/14

Comparison of Dierent Methods Lattice Continuum Ghost-gluon vertex constant Ghost propagator diverging diverging Gluon propagator vanishing? vanishing Other vertex functions no data for IR prediction: power-like (Alkofer et al., PLB 611) Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 6/14

Comparison of Dierent Methods Lattice Continuum Ghost-gluon vertex constant Ghost propagator diverging diverging Gluon propagator vanishing? vanishing Other vertex functions no data for IR prediction: power-like in 4 dim. (Alkofer et al., PLB 611) Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 6/14

Comparison of Dierent Methods Lattice Continuum Ghost-gluon vertex constant Ghost propagator diverging diverging Gluon propagator vanishing? vanishing Other vertex functions no data for IR prediction: power-like in 4 dim. (Alkofer et al., PLB 611) Continuum results for the IR exponents (κ = 0.5953... ): ghost-gluon-vertex: (p 2 ) 0 const. ghost propagator: (p 2 ) κ gluon propagator: (p 2 ) 2κ 3-gluon vertex: (p 2 ) 3κ Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 6/14

Vertices: Available Lattice Data (p,0,π/2) 3 A G Three-gluon vertex, one momentum vanishing 2 1.5 4 dimensions Maas et al., Braz. J. Phys. 37N1B, 2007 1 no power-like behavior 0.5 0-0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 p [GeV] Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 7/14

Vertices: Available Lattice Data (0,p,π/2) 3 A G Three-gluon vertex, one momentum vanishing 2 1.5 1 3 dimensions Cucchieri et al., PRD74, 2006 change of sign 0.5 0-0.5 0 0.5 1 1.5 2 2.5 p [GeV] Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 7/14

Vertices: Available Lattice Data 2 dimensions Maas, PRD75, 2007 IR exponent can be extracted Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 7/14

Vertices: Available Lattice Data 2 dimensions Maas, PRD75, 2007 IR exponent can be extracted Qualitatively the same results in 2, 3 and 4 dimensions? Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 7/14

Propagators IR behavior can be determined from the ghost DSE: -1 = -1 - Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 8/14

Propagators IR behavior can be determined from the ghost DSE: -1 = -1 - Use bare ghost-gluon vertex Power law ansätze for dressing functions in the IR Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 8/14

Propagators IR behavior can be determined from the ghost DSE: -1 = Use bare ghost-gluon vertex -1 - Power law ansätze for dressing functions in the IR ( ) B (p 2 ) β 1 d d q p 2 (2π) P A (q 2 ) α B ((p q) 2 ) β d µν (p q) µ q ν q 2 (p q) 2 Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 8/14

Propagators IR behavior can be determined from the ghost DSE: -1 = Use bare ghost-gluon vertex -1 - Power law ansätze for dressing functions in the IR ( ) B (p 2 ) β 1 d d q p 2 (2π) P A (q 2 ) α B ((p q) 2 ) β d µν (p q) µ q ν q 2 (p q) 2 Only one momentum scale simple power counting is possible 1 β = d 2 + α 1 + β 1 + 1 2 + 1 2 = 2β = α + d 2 2 Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 8/14

Propagators IR behavior can be determined from the ghost DSE: -1 = Use bare ghost-gluon vertex -1 - Power law ansätze for dressing functions in the IR ( ) B (p 2 ) β 1 d d q p 2 (2π) P A (q 2 ) α B ((p q) 2 ) β d µν (p q) µ q ν q 2 (p q) 2 Only one momentum scale Z(p 2 ) = (p 2 ) 2κ+2 d 2, G(p 2 ) = (p 2 ) κ Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 8/14

Vertex DSEs are more complicated. Vertices Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 9/14

Vertex DSEs are more complicated. Vertices -1 = -1 - Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 9/14

Vertex DSEs are more complicated. Vertices = -2 + + -1/2-1/2-1/2-1/2-1/2 - +1/2 +1/2 +1/2-1/3! -2 + Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 9/14

Vertex DSEs are more complicated. Vertices = -2 + + -1/2-1/2-1/2-1/2-1/2 - +1/2 +1/2 +1/2-1/3! -2 + Power counting works with some graphs, but what about unknown vertices? Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 9/14

Vertex DSEs are more complicated. Vertices = -2 + + -1/2-1/2-1/2-1/2-1/2 - +1/2 +1/2 +1/2-1/3! -2 + Power counting works with some graphs, but what about unknown vertices? = Skeleton expansion Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 9/14

Employ skeleton expansion Skeleton Expansion loop expansion with dressed quantities = + + +... Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 10/14

Employ skeleton expansion Skeleton Expansion loop expansion with dressed quantities = + + +... All orders have the same IR exponent, (insertions generating higher orders give no additional contributions). Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 10/14

Skeleton Expansion Skeleton expansion = calculation of the IR exponent of an arbitrary vertex function with 2n external ghosts and m external gluons: ( ) d δ 2n,m = (n m)κ + (1 n) 2 2 All orders have the same IR exponent, (insertions generating higher orders give no additional contributions). Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 10/14

Qualitative Behavior The dimension dependence of the IR behavior of YM Green functions. Dimension 4 3 2 κ 0.5953... 0.6 1 0.3976... 0.4 0.5 0.2 0 Ghost κ 1 1.6 2 1.4 1.5 1.2 1 Ghost is divergent in all three values of space-time dimension. Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 11/14

Qualitative Behavior The dimension dependence of the IR behavior of YM Green functions. Dimension 4 3 2 κ 0.5953... 0.6 1 0.3976... 0.4 0.5 0.2 0 Ghost κ 1 1.6 2 1.4 1.5 1.2 1 Gluon 2κ + 1 d 2 0.2 1 0.3 0.5 0.4 0 Ghost is divergent in all three values of space-time dimension. Gluon is vanishing in all three values of space-time dimension, except one case. Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 11/14

Qualitative Behavior The dimension dependence of the IR behavior of YM Green functions. Dimension 4 3 2 κ 0.5953... 0.6 1 0.3976... 0.4 0.5 0.2 0 Ghost κ 1 1.6 2 1.4 1.5 1.2 1 Gluon 2κ + 1 d 2 0.2 1 0.3 0.5 0.4 0 3-gluon 3κ + d 2 2 3 1.3 2.5 1.2 1.5 1.1 0.5 4-gluon 4κ + d 2 2 2.4 4 2.1 2.5 1.8 1 Ghost is divergent in all three values of space-time dimension. Gluon is vanishing in all three values of space-time dimension, except one case. Vertices have the same qualitative behavior in all three values of space-time dimension. Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 11/14

The Ghost Triangle Dominant diagram for three-gluon vertex. Analytic calculation conrms power-like behavior. q+p 1 p 3 ρ q-p 2 p 1 µ q ν p 2 Γ gh,ir µνρ (p 1, p 2, p 3 ) = d d q (q + p 1 ) µ (q p 2 ) ρ q ν 2 (2π) d ((q + p 1 ) 2 ) κ+1 ((q p 2 ) 2 ) κ+1 (q 2 ) κ+1 N c B 3 g 3 Used Method: Negative Dimension Integration (NDIM) Appell's function F 4 Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 12/14

Tensor Components of the Ghost Triangle H1,H2,H3 H1,H2,H3 1 0.5 0.1 0.05 0.01 0.005 0.1 0.15 0.2 0.3 0.5 0.7 1 1.5 p2 d=3, symmetric point (p 2 1 = p2 2 = p2 3 ), tensor basis of Celmaster-Gonsalves 10 1 0.1 0.01 0.001 0.01 0.02 0.05 0.1 0.2 0.5 1 d=4, symmetric point (p 2 1 = p2 2 = p2 3 ), tensor basis of Celmaster-Gonsalves p 2 2 A1,A2,A3,B2,B3 0.5 A1,A2,A3,B2,B3 1 0.5 0.1 0.2 0.05 0.1 0.05 0.020.1 0.15 0.2 0.3 0.5 0.7 1 0.01 p 2 0.01 0.005 0.1 0.15 0.2 0.3 0.5 0.7 1 1.5 p2 d=3, orthogonal conguration (p 2 2 = p2 3,p 2 p 3 ), tensor basis of Ball-Chiu d=4, orthogonal conguration (p 2 2 = p2 3,p 2 p 3 ), tensor basis of Ball-Chiu Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 13/14

Summary The skeleton expansion works in 2, 3 and 4 dimensions. Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 14/14

Summary The skeleton expansion works in 2, 3 and 4 dimensions. A general formula for the IR exponent of vertex functions was found. Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 14/14

Summary The skeleton expansion works in 2, 3 and 4 dimensions. A general formula for the IR exponent of vertex functions was found. It yields the same qualitative behavior of vertex functions in two, three and four dimensions. Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 14/14

Summary The skeleton expansion works in 2, 3 and 4 dimensions. A general formula for the IR exponent of vertex functions was found. It yields the same qualitative behavior of vertex functions in two, three and four dimensions. Lattice data in lower dimensions can give qualitative results similar to four dimensions. Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 14/14

Summary The skeleton expansion works in 2, 3 and 4 dimensions. A general formula for the IR exponent of vertex functions was found. It yields the same qualitative behavior of vertex functions in two, three and four dimensions. Lattice data in lower dimensions can give qualitative results similar to four dimensions. Gribov-Zwanziger connement scenario conrmed in 2 and 3 dimensions!!! Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 14/14

Summary The skeleton expansion works in 2, 3 and 4 dimensions. A general formula for the IR exponent of vertex functions was found. It yields the same qualitative behavior of vertex functions in two, three and four dimensions. Lattice data in lower dimensions can give qualitative results similar to four dimensions. Gribov-Zwanziger connement scenario conrmed in 2 and 3 dimensions!!! Thank you for your attention! Huber, Alkofer, Fischer, Schwenzer KFU Graz, TU Darmstadt 14/14