Exercises for lectures 7 Steady state, tracking and disturbance rejection

Similar documents
[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

Chapter 10 Time-Domain Analysis and Design of Control Systems

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors

LESSON 10: THE LAPLACE TRANSFORM

Lecture 7 - SISO Loop Analysis

ME 200 Thermodynamics I Spring 2014 Examination 3 Thu 4/10/14 6:30 7:30 PM WTHR 200, CL50 224, PHY 112 LAST NAME FIRST NAME

MECH321 Dynamics of Engineering System Week 4 (Chapter 6)

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

(1) Then we could wave our hands over this and it would become:

Basic Electrical Engineering for Welding [ ] --- Introduction ---

The Hyperelastic material is examined in this section.

Jones vector & matrices

Lecture 3: Phasor notation, Transfer Functions. Context

DISCRETE TIME FOURIER TRANSFORM (DTFT)

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University

ELG3150 Assignment 3

Grand Canonical Ensemble

Chapter 13 Laplace Transform Analysis

Analyzing Frequencies

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

LINEAR SYSTEMS THEORY

The Fourier Transform

Physics 256: Lecture 2. Physics

Outline. Types of Experimental Designs. Terminology. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 12

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Ch. 9 Common Emitter Amplifier

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

Sinusoidal Response Notes

Chapter 7 Control Systems Design by the Root Locus Method

Digital Signal Processing

Lecture 4: Parsing. Administrivia

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n

Calculation of electromotive force induced by the slot harmonics and parameters of the linear generator

Integration of Predictive Display and Aircraft Flight Control System

Why switching? Modulation. Switching amp. Losses. Converter topology. i d. Continuous amplifiers have low efficiency. Antag : u i

Announce. ECE 2026 Summer LECTURE OBJECTIVES READING. LECTURE #3 Complex View of Sinusoids May 21, Complex Number Review

CHAPTER 33: PARTICLE PHYSICS

Exercise 1. Sketch the graph of the following function. (x 2

Root Locus Techniques

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6

Voltage, Current, Power, Series Resistance, Parallel Resistance, and Diodes

SER/BER in a Fading Channel

2F1120 Spektrala transformer för Media Solutions to Steiglitz, Chapter 1

The Matrix Exponential

Chapter 12 Introduction To The Laplace Transform

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Small signal analysis

Discrete Shells Simulation

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

IVE(TY) Department of Engineering E&T2520 Electrical Machines 1 Miscellaneous Exercises

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

A Note on Estimability in Linear Models

Chapter 10. The singular integral Introducing S(n) and J(n)

IV. First Law of Thermodynamics. Cooler. IV. First Law of Thermodynamics

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Outlier-tolerant parameter estimation

Equil. Properties of Reacting Gas Mixtures. So far have looked at Statistical Mechanics results for a single (pure) perfect gas

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Lie Groups HW7. Wang Shuai. November 2015

Period vs. Length of a Pendulum

A Probabilistic Characterization of Simulation Model Uncertainties

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

10. The Discrete-Time Fourier Transform (DTFT)

Physics 160 Lecture 3. R. Johnson April 6, 2015

EE750 Advanced Engineering Electromagnetics Lecture 17

Chapter 3 Lecture 14 Longitudinal stick free static stability and control 3 Topics

Some Useful Formulae

Consider serial transmission. In Proakis notation, we receive

The Matrix Exponential

8-node quadrilateral element. Numerical integration

ECE 2210 / 00 Phasor Examples

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China

ECE 344 Microwave Fundamentals

Calculus II (MAC )

LINEAR SYSTEMS THEORY

Numerical Method: Finite difference scheme

EEO 401 Digital Signal Processing Prof. Mark Fowler

Study of Dynamic Aperture for PETRA III Ring K. Balewski, W. Brefeld, W. Decking, Y. Li DESY

Southern Taiwan University

Differential Equations

2008 AP Calculus BC Multiple Choice Exam

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 6: Heat Conduction: Thermal Stresses

Where k is either given or determined from the data and c is an arbitrary constant.

Transfer function and the Laplace transformation

Stochastic Heating in RF capacitive discharges

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ANALYSIS: The mass rate balance for the one-inlet, one-exit control volume at steady state is

Consider a system of 2 simultaneous first order linear equations

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall

Chapter 6 Student Lecture Notes 6-1

10. Limits involving infinity

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

Transcription:

Exrc for lctur 7 Stady tat, tracng and dturbanc rjcton Martn Hromčí Automatc control 06-3-7

Frquncy rpon drvaton Automatcé řízní - Kybrnta a robota W lad a nuodal nput gnal to th nput of th ytm, gvn by a tranfr functon y( ) G( ) u( ), that tady at th bgnnng a u( t) ant u( ) L ant It wll b th mag of th nput gnal a a y( ) G( ) G( ) y pr( ) ( j)( j) j j whr ag( ) ag( j) a G( j) ( j) j j j ag( ) ag( j) a G( j) ( j) j j j y () pr ar partal fracton corrpondng to natural mod of th rpon. Th mod dappar n th tady tat bcau th ytm tabl, o jt y () t Martn Hromčí Pr-ARI-07-05 jt j j G( j) Im G( j) arctg R G ( j )

Frquncy rpon drvaton Automatcé řízní - Kybrnta a robota It follow, that Whr w can u th Eulr formula: jt jt y () t j a G( j) jt a G( j) j j a G( j) j j( t) j( t) jn( t) a G( j) j a G( j) n( t ) Im G( j) G( j) arctg R G ( j ) j jt jx co x j n x jx co x j n x jx jx j n x Martn Hromčí Pr-ARI-07-05 3

Automatcé řízní - Kybrnta a robota Exampl: Rpon to nuodal nput A ytm wth quaton y( t) y( t) u( t) and tranfr fun. G( ) ( ) rpond to nuodal nput gnal u( t) n(0 t) a follow 0 y( ) G( ) u( ) 0 0 00 00 y () t yt () Trannt and tady tat y () t 0 t yt ( ) n(0 t ) 0 0 y ( t) y ( t) arctan( 0) 84.3.47rad ut () yt () Martn Hromčí Pr-ARI-07-05 4

Automatcé řízní - Kybrnta a robota Frquncy rpon graphcally frquncy rpon (plot G( j) ) can b drawn n two way Bod plot ampltud and pha paratly - functon bod Ampltud uually logarthmc n db, or lnar n ab. valu Pha alway lnar, n dgr (dg) or n rad. Frquncy alway logarthmc, uually n rad/ or n Hz Nyqut plot n complx pac - functon nyqut bnft: how ampltud and pha multanouly drawbac: w don t contrbuton of ndvdual factor Dcbl - namd aftr A.G. Bll, ntroducd by Bll Lab dmnonl unt, orgnally for powr rato 0log( Py Pu) If th powr rato wa xprd by th voltag rato, thn 0log( Vy Vu) Gnrally for th rato of two varabl (n our ca ampltud), n ARI alway x[db] 0 log( x) Martn Hromčí Pr-ARI-07-05 5

Exampl: Stady-gan Automatcé řízní - Kybrnta a robota Ex. : For tat-pac modl x( t) Ax( t) Bu( t) y( t) Cx( t) Du( t) G() C I A B D G(0) CA B D Ex. : For xtrnal modl G () b () a () 0 b0 0, a0 0 b(0) b0 G(0) a0 0, b0 0 a(0) a0 c 0, a0 0, b0 0 Martn Hromčí Pr-ARI-07-05 6

Exampl: Stady tat Automatcé řízní - Kybrnta a robota Ex. : For a ytm wth th tranfr functon G () Stady-tat valu of th tp rpon Stady-tat valu of th mpul rpon Ex. : Impropr u of th fnal valu thorm Lt hav a ytm gvn by 3 th tranfr functon G () I th tady-tat valu of th tp rpon h 3? No! Th ytm untabl thrfor th tp rpon do not hav any tady-tat valu 3 3 t h() t Martn Hromčí Pr-ARI-07-05 7 3( ) 0 6 0 g lm G( ) 0 h G(0) lm G( ) 0 0

Automatcé řízní - Kybrnta a robota Exampl: Gan at nfnty (VF) Sgnal f() t ha (aftr)ntal valu wth th mag f (0 ) lm f ( ) Obvouly f (0 ) 0 whn th dgr of th numrator at lat two l than th dgr of th dnomnator For (non-trctly) propr tranfr functon n n bn bn n n an an th mpul rpon tart n n n g(0 ) lm ( bn ) ( an ) and th tp rpon n n n h(0 ) lm ( bn ) ( an ) bn an For trctly propr tranfr functon n bn n n an an th mpul rpon tart n g(0 ) bn an b 0 n g(0 ) 0 and th tp rpon n h(0 ) 0 Martn Hromčí Pr-ARI-07-03 8

Impul and tp rpon by typ Automatcé řízní - Kybrnta a robota Typ 0 (tatc) F () Typ ( t ordr atatm) F () Typ ( nd ordr atatm) F () Typ 3 (3 rd ordr atatm) F () 3 0 3 Martn Hromčí Pr-ARI-07-03 9

Automatcé řízní - Kybrnta a robota Stady-tat rror formula tp ramp ( ) lm L( ) K p 0 ( ) lm L( ) Kv 0 ( ) parabola lm L( ) Ka 0 Lmt ar nam a Stady-tat rror contant of tady-tat rror: Contant of poton rror K lm L( ) Contant of vlocty rror K lm L( ) Contant of acclraton rror Th contant dtrmn th tady-tat bhavor and thu omtm ar ud for th dgn pcfcaton. K v a p 0 0 lm L( ) 0 Martn Hromčí Pr-ARI-07-05 0

Drvaton of tady-tat rror from Bod plot Automatcé řízní - Kybrnta a robota Typ 0 z z L( ) K K lm L( ) L(0) K p p 0 p Th ntal valu of th ampltud frquncy rpon z 0 log (0) 0 log M K 0 log K p Th ntal valu = poton contant (= tady-tat gan) v db P 0log K p 0log L(0) 0dB 0 0log M( ) Martn Hromčí Pr-ARI-07-05

Drvaton of tady-tat rror from Bod plot Automatcé řízní - Kybrnta a robota Typ Th ampltud frquncy rpon tart for mall ω 0 n wth an ntal lop of It can b rplacd by a functon whch ntrct th omga ax whn z z L( ) K K lm L( ) K p p 0 log M( ) 0 log 0 v 0 K 0 z p 0dB dc K Kv p Martn Hromčí Pr-ARI-07-05 0log K z L() K p z 0 p 0dB 0 0log M( ) z 0dB dc K v

Drvaton of tady-tat rror from Bod plot Automatcé řízní - Kybrnta a robota Typ Th ampltud frquncy rpon tart for mall ω 0 n wth an ntal lop It can b rplacd by a functon whch ntrct th omga ax whn z z L K K L K p p ( ) a lm ( ) 0 0 log M( ) 0 log 40dB dc K 0 0 z p z L() K p 0log K z 0 p 0dB 0 K 0log M( ) z p K a K a Martn Hromčí Pr-ARI-07-05 3

Exampl Automatcé řízní - Kybrnta a robota >> L=(+)/(+)/(3+), M 5dBv=valu(L,0),L=L/v*0^(5/0),K=valu(L,0),bod(L) L = 34 + 34 / 6 + 5 + ^ K = 5.634 >> KpdB=0*log0(ab(valu(L,j*.0))), Kp=0^(5/0) KpdB = 5.0003, Kp = 5.634 >> nfty = /(+Kp) nfty = 0.50 Intal lop 0, o t a ytm of typ 0 (wthout atatm). Intal valu of th aymptot 5dB and thrfor 5 0 K p 5d B 0 5. 63 Stady-tat rror of tp rpon tp, K p 0.5 L=(+)/(+)/(3+)/,v=valu(coprm(*L),0);L=L/v*0, L = 60 + 60 / 6 + 5^ + ^3 Kv=valu(coprm(*L),0),bod(L) Kv = 0 0 Intal lop 0 db/d, o t a ytm of typ. Drawd ntal aymptot cro th zro at frquncy 0 and thrfor Kv 0 Stady-tat rror of mpul rpon ramp, K v 0. Martn Hromčí Pr-ARI-07-03 4

Exampl of th tady-tat valu Automatcé řízní - Kybrnta a robota ntgrator r y Attnton: Th clod loop tabl n all ca! ntg. Sgnal coror: rfrnc output rror r 0( 3)( ) y 3 ntg. r 9( 3)( ) 3 y rfrnc tp, ramp parabola Martn Hromčí Pr-ARI-07-03 5

How to trac wth a ytm of nuffcnt typ? Automatcé řízní - Kybrnta a robota How to nur propr tracng wth a ytm of nuffcnt typ? ung a dynamc controllr, whch proc th control rror r () () C () u () F () y () G( ) F( ) C( ) r () () G () y () Th rgulator C dgnd o, that G( ) F( ) C( ) ha a rqurd typ and th clod-loop ytm tabl! W want to nur zro rror of tp rp. for ytm of typ 0 ( F(0), F(0) 0) () C( ) F( ), tp C (0) F (0) Choong C( ) w obtanc(0) and thu tp, 0 But thn C ( ) C u () utp, C( ) F( ) th ytm mut b tll "fdd, thr no othr choc. (0) 0 C(0) F(0) F(0) Martn Hromčí Pr-ARI-07-03 6

Automatcé řízní - Kybrnta a robota Exampl 0( ) To trac th ramp wth a ytm gvn by th tranfr functon F () w u rgulator. Thn th clod-loop ytm ( ) C( ) ( 3) tabl ( ) 0( )( 3) 9.+33.5.8 W achvd th rqurd typ, 0( )( 3) G( ) F( ) C( ) hnc th tady-tat rror zro. ( ) But thn C ( ) u () What th prc? u alo a ramp! C ( ) F ( ) C ( ) jaá j cna? uramp, lm 0 C ( ) F ( ) 0 0 u j taé rampa 3 0( ) ( ) Martn Hromčí Pr-ARI-07-05 7

Exampl: Poton tracng wth fnt rror Automatcé řízní - Kybrnta a robota Control of movmnt drcton (LRV, automatc car) 5 G () C() 0 rror ( 0) ( ) r( ) r( ) r( ) C( ) G( ) 5 (0 5 ) 5 0 tady-tat rror ( 0) lm 0 (0 5 ) 5 o, 0 lm ( 0) rampa, 0 (0 5 ) 5 for xampl C () r () () C () u () G () y () >> G=5/(+0),C=(+)/ G = 5 / 0 + C = + / >> root(g.dn*c.dn+... G.num*C.num) an = -4.3007-0.6993 tracng.mdl Martn Hromčí Pr-ARI-07-05 8

Exampl: Poton tracng wth zro rror Automatcé řízní - Kybrnta a robota targt ngagmnt, fr ctrl To trac th ramp, th opn-loop ytm ha to contan doubl-ntgrator, for xampl Error C () ( 0) ( ) r( ) r( ) 3 C( ) G( ) 0 0 5 Stady-tat rror to ramp r () () C () u () G () y () ( 0) rampa, 0 3 lm 0 0 0 5 >> C=(*+)/^ C = + / ^ >> root(g.dn*... C.dn+ G.num*C.num) an = -8.9445-0.578 + 0.596-0.578-0.596 tracng.mdl Martn Hromčí Pr-ARI-07-05 9