Glaciers and Ice Ages

Similar documents
Glaciers. (Shaping Earth s Surface, Part 6) Science 330 Summer 2005

Glaciers Earth 9th Edition Chapter 18 Glaciers: summary in haiku form Key Concepts Glaciers Glaciers Glaciers Glaciers

Glaciers. Valley and Piedmont Glaciers. Glaciers, Gloobal Warming El Niño and the Southern Oscillation. Ice Age Sea Level on North America

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO)

How do glaciers form?

Chapter 5: Glaciers and Deserts

Lecture Outlines PowerPoint. Chapter 6 Earth Science 11e Tarbuck/Lutgens

INDEX_Glaciers.pdf. mountain (alpine) glacier NLG Test bank: [Glaciers01-03.jpg] High Quality: [Moraine_med-lat_Haines_AK_.jpg]

Pleistocene Glaciations

Glacial Modification of Terrain

Prentice Hall EARTH SCIENCE

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa

PHYSICAL GEOGRAPHY. By Brett Lucas

1. Any process that causes rock to crack or break into pieces is called physical weathering. Initial product = final product

MASS MOVEMENTS, WIND, AND GLACIERS

Chapter Causes of Climate Change Part I: Milankovitch Cycles

Mass Movements, Wind, and Glaciers

Spring break reading. Glacial formation. Surface processes: Glaciers and deserts. The Control of Nature

Glacial Geomorphology Lecture 1: Glaciers & Glacial Environments. GGY 166: Geomorphology of Southern Africa

Glaciers. A glacier is a persistent mass of ice: snow accumulation exceeds melting. generally occur in two areas: high latitudes, or high elevations

Lecture 10 Glaciers and glaciation

Outline 23: The Ice Ages-Cenozoic Climatic History

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

SAMPLE PAGE. pulses. The Ice Age By: Sue Peterson

4. What type of glacier forms in a sloping valley between rock walls? a. firn glacier b. ice sheet c. cirque d. alpine glacier

Natural Climate Variability: Longer Term

ES 106 Study Guide for Final Exam Brown Spring 2009

Glaciers form wherever snow and ice can accumulate High latitudes High mountains at low latitudes Ice temperatures vary among glaciers Warm

Any Questions? Glacier

Glaciers. Geology of the Hawaiian Islands. Any Questions? Earth Systems Today CD. Class April Why do we care?

ES 106 Study Guide for Final Exam Brown Spring 2010

Lecture Outline Lecture Outline Monday April 9-16, 2018 Questions? Announcements:

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance

How to Use This Presentation

Chapter 9 Notes: Ice and Glaciers, Wind and Deserts

Amazing Ice: Glaciers and Ice Ages

Bell Ringer. Are soil and dirt the same material? In your explanation be sure to talk about plants.

The Ice Age sequence in the Quaternary

What is a Glacier? Types of Glaciers

Glacial processes and landforms NGEA01, 2014

Monday, December 4, 2017 The Pleistocene Glaciations (Chapter 14) Week 14 Assessment, closes Wednesday Dec 6

8. Climate changes Short-term regional variations

2/23/2009. Visualizing Earth Science. Chapter Overview. Deserts and Drylands. Glaciers and Ice Sheets

Chapter 2 Planet Earth

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks

Reminders: Week 14 Assessment closes tonight Watch for Week 15 Assessment (will close Wednesday, Dec. 13)

Climate and Environment

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING

Introduction to Climate Change

Chapter 2. Wearing Down Landforms: Rivers and Ice. Physical Weathering

Lecture 10: Seasons and Ice Age. Earth s Orbit and Its Variations. Perihelion and Aphelion. Tilt Produces Seasons

Science Olympiad Dynamic Earth: Glaciers

NATS 101 Section 13: Lecture 32. Paleoclimate

The Distribution of Cold Environments

lecture 12 Paleoclimate

Global climate change

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

Maximum Extent of Pleistocene Glaciation - 1/3 of land surface Most recent glacial maximum peaked 18,000 years ago and is considered to have ended

Ice Ages and Changes in Earth s Orbit. Topic Outline

Chapter 2. Denudation: Rivers and Ice

Chapter 6: Global Climate Change

Weathering, Erosion and Deposition

EARTH S CHANGING SURFACE

ENIGMA: something that is mysterious, puzzling, or difficult to understand.

Orbital-Scale Interactions in the Climate System. Speaker:

Landscape. Review Note Cards

PTYS 214 Spring Announcements. Get exam from Kyle!

THE ACTION OF GLACIERS

Glaciers: The Work of Ice

Chapter 14: Climate Change

The Great Ice Ages. Copyright abcteach.com 2001 Graphics from Art Today

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

Climate Change. Unit 3

Chapter 1 Section 2. Land, Water, and Climate

Chapter 2: Physical Geography

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind

Which landscape best represents the shape of the valleys occupied by glaciers? A) B) C) D)

Science 20. Unit C: The Changing Earth. Assignment Booklet C3

3 Erosion and Deposition by Ice

Welcome to ATMS 111 Global Warming.

T. Perron Glaciers 1. Glaciers

The State of the cryosphere

ERS 121 Study Guide for Exam 1. Lecture 1. Ice Age Theory 1. Where did the ice age theory originate?

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE

In the summer of 1836, Agassiz stayed with a well known geologist (Chapentier) who had been convinced by a collegue (Venetz) of extensive Alpine

Extent of Periglacial = Global Permafrost Permafrost: Soil and/or rock where temperatures remain below 0 degrees C for 2 or more years.

4 Changes in Climate. TAKE A LOOK 2. Explain Why is more land exposed during glacial periods than at other times?

( 1 d 2 ) (Inverse Square law);

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look.

Glaciers: The Work of Ice

Quarternary Climate Variations

WELCOME TO PERIOD 14:CLIMATE CHANGE. Homework #13 is due today.

Milankovitch Theory of the Ice Ages

Class Notes: Surface Processes

Surface Events & Landforms. Mrs. Green

ATOC OUR CHANGING ENVIRONMENT

Energy and Seasons A B1. 9. Which graph best represents the general relationship between latitude and average surface temperature?

Weathering, Erosion, Deposition

Chp Spectral analysis a. Requires that the climate record must be at least 4 times longer than the cycled analyzed

We re living in the Ice Age!

Transcription:

ES 106 Glaciers and Ice Ages I. Glacier thick mass of ice accumulated over years, decades, centuries A. Function of recrystallization of fallen snow B. Types 1. alpine valley: a. high elevations worldwide b. piedmont coalescence of valley glaciers in lowlands 2. ice sheets presently Antarctica and Greenland a. Antarctica is 4300 m thick b. Contains 2/3 of fresh water and 4/5 of ice c. ice cap smaller than sheets C. Plastic flow from highlands, or from central accumulation area 1. upper surface brittle: cracks into crevasses 2. sides affected by friction: center moves faster II. budget of a glacier A. snow falls: stays or leaves 1. accumulation zone: snow stays a. more snowfall than loss due to evaporation, melting, calving b. becomes glacial ice upon recrystallization 2. wastage zone: snow leaves a. loss exceeds accumulation ablation 1) melting 2) evaporation 3) calving into icebergs into the sea a) iceberg mostly submerged b) navigation hazard in high mid-latitudes b. divided from accumulation zone at the snowline B. advance vs. retreat 1. advance tip further from source area: downward or outward a. increase in accumulation b. increase in rate of movement 2. retreat tip closer to source area a. always moving away from source area b. ablation exceeding accumulation III. glacial erosion A. striations and polish 1. plucks rocks from its bed 2. grinds its bed with these rocks abrasion 3. makes the rocks into rock flour B. valley glacier landforms 1. changes stream-carved drainage a. straighter b. u-shaped instead of v-shaped 2. landforms include hanging valley, arête, cirque, horn

IV. Glacial deposition A. collectively called drift : originated with Great Flood explanation 1. moraines from ice moving material a. lateral, medial along valley glaciers b. terminal, end in both types c. continental have numerous unique landforms: drumlin, esker, kettle lakes 2. outwash plains beyond reach of glacier V. Ice Ages A. Earth s climate oscillates between glacial and interglacial states 1. glacial stage more stable than interglacial 2. stable beyond predicted stability conditions, due to energy requirement to cross threshold B. Characteristics of glacials and interglacials 1. glacial a. about every 100,000 years b. 10 O C worldwide average temperature c. CO 2 about 200 ppm 2. Interglacial ice remains on Greenland and Antarctica a. shorter duration than glacial b. 15 O C worldwide average temperature c. CO 2 about 280 ppm C. Pliocene-Pleistocene 1. Extensive areas of high mid-latitudes covered with ice sheets a. Most recent period of Ice Age shows up to 20 periods of ice advance and melting in the past 3 million years b. Polar landmass of Antarctica has had ice at least 14 million years 2. Area a. ice extended into central Midwest, central to southern Europe, central Asia b. some parts of Alaska, Siberia not ice covered desert-like precipitation, protected from flow by mountain ranges c. effects 1) drift 2) deranged drainage 3) pluvial lakes 4) changes in sea level

D. More ancient Ice Ages 1. Karoo a. 260 to 350 mya b. Lasted 90 million years c. Wegener s evidence of continental movement 2. Andean-Saharan a. 430 to 460 mya b. Lasted 30 million years 3. Cryogenian a. 630 to 850 mya b. Lasted 200 million years c. Periods of all Earth covered with glacier 4. Huronian a. Over 2 billion years ago b. Lasted 300 to 400 million years VI. Documentation A. Drift deposits 1. moraine and loess 2. four major intervals of ice advance 3. successive advances obliterate previous deposits B. loess and marine sediments show better than drift 1. at least 18 (counting most recent) 2. regular advances over past 2.5 million years C. oxygen isotope record 1. two common isotopes of oxygen a. oxygen-16 and oxygen-18 are stable (not subject to decay) b. have differing numbers of neutrons in nucleus gives different atomic mass c. at colder temperatures, more oxygen-18 incorporated into skeletons d. also, heavier oxygen water less likely to evaporate 1) more oxygen-16 in vapor precipitation storage on land 2) more oxygen-18 left behind in water 3) reinforces the temperature effect 2. oxygen isotope ratio in planktonic organisms show dozens of climate swings over past 3 million years D. ice cores contain trapped air record of carbon dioxide content

VII. Causes A. land mass configuration 1. need high latitude land masses to accumulate ice 2. high elevations in westerly wind belt help keep ice on land B. reinforcement of temperature changes created by changes in Earth s movement around Sun predictable Milankovich Cycles 1. amount of deviation from circular orbit: eccentricity a. greater eccentricity causes greater difference in seasons from northern to southern hemisphere 1) more sunlight at perihelion than at aphelion 2) varies between nothing, to 6% (is 1.7% at present) 3) 100,000 year cycle and 400,000 year cycle 4) Direction of elongation changes with time too b. less results in more consistent seasons 2. change in axial tilt: obliquity a. degree of tilt of axis of rotation: between 22 and 24.5 O b. increases contrast of summer to winter temperatures 1) more results in greater seasonal variation of temperatures 2) less has a smaller change in seasonal temperatures c. about 41,000 year period of change in obliquity 3. change in direction of tilt precession of axis a. Important in its relation to the others superimposed upon them b. spin axis oriented toward Polaris at present a) complete circle over 25,700 years b) axial precession opposite direction from precession of obliquity, results in 19,000 to 23,000 year period c) effect changes which hemisphere is closer to Sun during summer, i. causing that hemisphere to have greater seasonal contrast than the other c. total amount of sunlight received does not change, just the seasonal distribution of it d. at present, southern hemisphere has greater seasonal contrasts, with milder seasons in north 4. Data from sea sediments support the astronomical influence a. Oxygen isotope ratios in shells of marine organisms 5. summary: glaciation favored by low obliquity (low seasonal contrast), high eccentricity, and precession to have land hemisphere summer at aphelion to reduce melting C. CO 2 levels which may be partly a function of glaciations

VIII. Feedbacks in glacial climate system A. albedo reflectance: by clouds and ice=positive feedback loop 1. ice a. more ice greater albedo b. greater albedo--less heating c. less heating more ice 2. cloud a. cloud seeds: aerosol sulfur compounds b. elevated during glacial times c. source: organic algae 1) more algae, more sulfur aerosols 2) more sulfur aerosols, more clouds 3) more clouds, more albedo and more precipitation B. carbon dioxide changes 1. rapid, and nearly identical pattern to oxygen isotope changes 2. causes a. biological creation of CO 2 by photosynthesis, 1) function of nutrient-utilization a) high utilization, low CO 2 b) low utilization, high CO 2 2) high productivity in glacial periods? b. Shelf nutrient hypothesis: phosphate 1) Nutrients supplied from rivers, removed by sedimentation 2) Lowered sea levels allow deposits on shelf to be weathered, eroded, delivered to sea by rivers 3) Greater phosphate availability, greater productivity, larger amount of sedimentation of CO 2 in hard parts 4) However, indicators show lack of increase in phosphate c. Iron fertilization hypothesis 1) Iron is trace nutrient for algae 2) Climate change in glacial period intensifies wind 3) Brings more iron to sea in dust storms d. Coral reef hypothesis 1) Reef growth will increase CO 2 content of atmosphere a) Coral makes calcium carbonate skeleton b) Byproduct of the reaction is release of CO 2 2) Flooding of shelves with rise in sea level leads to reef growth 3) As reefs are weathered, CO 2 leaves atmosphere 4) Unbalanced response of sea-level changes to CO 2 in atmo. e. Forest cover 1) Increased desert belts reduced tropical forest 2) Increase in CO 2 to sea increases atmospheric CO 2 in glacial 3) Negative feedback overshadowed by the positive feedbacks