Adsorption of Rhodamine B from an Aqueous Solution: Kinetic, Equilibrium and Thermodynamic Studies

Similar documents
Adsorption of Congo red from Aqueous Solution by a Novel Activated Carbon from Passiflora foetida [PAC-MnO 2 -NC]: Different Isotherm Studies

Equilibrium and Kinetics of Adsorption of Cationic Dyes by STISHOVITE Clay TiO2 Nanocomposite

Equilibrium Studies and Kinetics Mechanism for the Removal of Congo red by Passiflora Foetida Activated Carbon Mno 2 - Nano Composite

Removal of Malachite Green by Stishovite-TiO 2 Nanocomposite and Stishovite Clay- A Comparative Study

ADSORPTION OF MALACHITE GREEN DYE ONTO ACTIVATED CARBON OBTAINED FROM THE NATURAL PLANT STEM

Equilibrium, kinetic and thermodynamic study of adsorption of rhodamine B from aqueous solution by activated carbon from Peltophorum Pterocarpum leaf

a variety of living species. Therefore, elimination of heavy metals/dyes from water and

Studies on the Removal of Ni(II) from Aqueous Solution using Fire Clay-TiO 2 Nanocomposite and Fire Clay

SORPTION STUDIES OF RHODAMINE-B BY PLASTER OF PARIS

Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution

Journal of Babylon University/Engineering Sciences/ No.(4)/ Vol.(25): 2017

Adsorption Studies of Organic Pollutants onto Activated Carbon

Kinetic and Isotherm Studies of Removal of Metanil Yellow Dye on Mesoporous Aluminophosphate Molecular Sieves

Department of Chemistry, Federal University of Technology Owerri, PMB 1526, Owerri. Nigeria.

Research in Chemistry and Environment

GROUNDNUT SHELL: EFFECTIVE ADSORBENT FOR DEFLUORIDATION FROM AQUEOUS SOLUTION

1997 P a g e. Keywords: Adsorption, banana peel, Colour removal, orange peel

Adsorptive Removal of Basic Violet Dye from Aqueous Solution by Activated Carbon Prepared From Tea Dust Material

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder

Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Yuh-Shan Ho

Removal of crystal violet from waste water

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

Faculty of Sciences, University of Tlemcen, P.O. Box Tlemcen - ALGERIA Tel./Fax: 00 (213) : yahoo.

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: , ISSN(Online): Vol.10, No.

Studies on the Removal of Rhodamine B and Malachite Green from Aqueous Solutions by Activated Carbon

Removal Of Copper From Waste Water Using Low Cost Adsorbent

Kinetics and Equilibrium Study on the Removal of Ni (II) Using Activated Carbon-Tio 2 Nano Composite

Acid Orange 7 Dye Biosorption by Salvinia natans Biomass

Adsorption of Acid Orange-7 Dye onto Activated Carbon Produced from Bentonite - A Study of Equilibrium Adsorption Isotherm

Sriperumbudur , INDIA

Adsorption kinetics and thermodynamics of fluoride onto Phyllanthus emblica based thermally activated carbon

Removal of rhodamine B from aqueous solution by almond shell biosorbent

Activated Carbon from Sugar Waste Bagasse is used for Removal of Colour from Dye Solution

Removal of Direct Red Dye Using Neem Leaf Litter

FEASIBILITY STUDY OF ACID DYE REMOVAL FROM SYNTHETIC AQUEOUS SOLUTIONS BY SORPTION USING TWO VARIETIES OF ORANGE PEEL IN BATCH MODE

Kinetics of adsorption of methylene blue onto activated carbon prepared from palm kernel shell

BIOSORPTION OF REMAZOL NAVY BLUE DYE FROM AN AQUEOUS SOLUTION USING PSEUDOMONAS PUTIDA

Removal of Fluoride from Synthetic Water Using Chitosan as an Adsorbent

T. SANTHI a*, S. MANONMANI b, T.SMITHA a

Malachite Green Dye Removal Using the Seaweed Enteromorpha

Kinetic, Thermodynamic and Isotherm Studies on the Removal of Rhodamine B dye using Activated Carbon

Chapter 7 Adsorption thermodynamics and recovery of uranium

Evaluation of adsorptive capacity of natural and burnt kaolinitic clay for removal of congo red dye

Adsorption behavior of methylene blue onto gellan gum-bentonite composite beads for bioremediation application

Removal of Copper (II) from Aqueous Solutions using Chalk Powder

Appendix A. Supplementary information for ACS Sustainable Chemistry & Engineering

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal

Equilibrium, Kinetics and Isothem Studies onthe Adsorption of Eosin Red and Malachite Green Using Activated Carbon from Huracrepitans Seed Shells

Kinetics and Equilibrium Studies on Biosorption of CBB by Coir Pith

Received: 24 th April-2012 Revised: 07 th May-2012 Accepted: 10 th May-2012 Research article

HPAN TEXTILE FIBER WASTES FOR REMOVAL OF DYES FROM INDUSTRIAL TEXTILE EFFLUENTS

Comparative adsorption study for the removal of Alizarin Red S and patent Blue VF by using mentha waste

Removal of methyl violet dye by adsorption onto N-benzyltriazole derivatized dextran

Removal of Crystal Violet from Aqueous Solution by Activated Biocharfibers. Maria A. Andreou and Ioannis Pashalidis

The Use of Acacia tortilis Leaves as Low Cost Adsorbent to Reduce the Lead Cations from an Aquatic Environment

Journal of Applicable Chemistry 2017, 6 (5): (International Peer Reviewed Journal)

Journal of Chemical and Pharmaceutical Research, 2012, 4(10): Research Article

INTERNATIONAL JOURNAL OF CIVIL 17 19, July ENGINEERING. COLOR REMOVAL FROM TEXTILE WASTEWATER USING CuO NANO- PARTICLE COATED ON SAND, CINDER AND GAC

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

Removal of Cr(VI) from Wastewater using Fly ash as an Adsorbent

Key words: AAIC adsorbent, Adsorption isotherms, Batch adsorption, Cu (II), Kinetics and Thermodynamics. Fig 1:Ipomoea Carnea

Removal of Chromium from Aqueous Solution Using Modified Pomegranate Peel: Mechanistic and Thermodynamic Studies

Sixteenth International Water Technology Conference, IWTC , Istanbul, Turkey 1

Removal of Malachite Green from Aqueous Solutions by Adsorption Using Low Cost Adsorbent Andrographis Paniculata Leaves

Biosorption of Malachite Green from Aqueous Solution Using Alocasia Macrorrhizos Leaf Powder

Equilibrium and Kinetic Studies of Reactive Dye Adsorption on Water Hyacinth Root Powder

Removal of Basic Dyes from Aqueous Solutions by Sugar Can Stalks

Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Ni(II) and Cu(II) by using Nyctanthes arbor-tristis leaf Powder

Methylene blue adsorption by pyrolytic tyre char

Adsorption Kinetics and Intraparticulate Diffusivity of Aniline Blue Dye onto Activated Plantain Peels Carbon

KINETICS AND EQUILIBRIUM STUDY OF ADSORPTION OF PHENOL RED ON TEFF (Eragrostis teff) HUSK ACTIVATED CARBON

Biokinetic Study on Chromium Removal from Textile Wastewater Using Azadirachta Indica as a Low Cost Adsorbent

Current World Environment Vol. 4(2), (2009)

Study of Adsorption Isotherm and Kinetics of Reactive Yellow Dye on Modified Wheat Straw

ADSORPTION STUDIES OF SOME DYES ON ACACIA CONCINNA POWDER

MASS TRANSFER AND ADSORPTION OF AMOXICILLIN FROM WASTEWATER USING WHEAT GRAIN

Rajashree Kobiraj, Neha Gupta, Atul Kumar Kushwaha & M C Chattopadhyaya* Indian Journal of Chemical Technology Vol. 19, January 2012, pp.

Adsorption of Cu(II) onto natural clay: Equilibrium and thermodynamic studies

Adsorption Studies of Astrozon Blue Dye onto Acrylic Resin

Novel dendrimer-like magnetic bio-sorbent based on modified orange peel. waste: adsorption-reduction behavior of arsenic

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.7, pp , 2015

Adsorption Study of Some Sulphanilic Azo Dyes on Charcoal

International Journal of Chemistry and Pharmaceutical Sciences

Removal of Malachite Green Dyes By Adsorption onto Activated Carbon Mno 2 Nanocomposite Kinetic Study and Equilibrium Isotherm Analyses

Uranium biosorption by Spatoglossum asperum J. Agardh:

Efficient removal of heavy metal ions with EDTA. functionalized chitosan/polyacrylamide double network

Removal of indigocarmine from industrial effluents using low cost adsorbent

Successive Extraction of As(V), Cu(II) and P(V) Ions from Water. Using Surface Modified Ghee Residue Protein

Equilibrium and Kinetics Study of Adsorption of Crystal Violet onto the Peel of Cucumis sativa Fruit from Aqueous Solution

Kinetic Parameters And Evaluation Performance for Decolorization Using Low Cost Adsorbent

REMOVAL OF SYNTHETIC DYE ACID RED 186 FROM WATER BY ACTIVATED CARBON. Libya

Adsorptive Removal of Colour from Aqueous Solution of Disazo Dye by Using Organic Adsorbents

Adsorption removal of pollutants (triphenylmethane and xanthene dyes) from water by charfines and activated carbon

EXPERIMENTAL PROCEDURE

Isotherm study on adsorption removal of Pb (II) by MCM-41 zeolite synthesized from biomass ash TAN Gang1,a, XUE Yongjie2,b and CAI Jun3,c

Application of kinetic models to the sorption of disperse dyes onto alunite

Rhodamine B Adsorption on Natural and Modified Moroccan Clay with Cetyltrimethylammonium Bromide: Kinetics, Equilibrium and Thermodynamics

Journal of Chemical and Pharmaceutical Research

ADSORPTION OF METHYL RED AND METHYL ORANGE USING DIFFERENT TREE BARK POWDER

Supporting information. Enhanced photocatalytic degradation of methylene blue and adsorption of

Transcription:

Adsorption of Rhodamine B from an Aqueous Solution: Kinetic, Equilibrium and Thermodynamic Studies M.Santhi 1, P.E.Kumar 2* Assistant Professor, PG and Research, Department of Chemistry, Erode Arts and Science College (Autonomous), Erode, Tamil Nadu, India 1. Associate Professor, PG and Research Department of Chemistry, Erode Arts and Science College (Autonomous), * Corresponding Author Erode, Tamil Nadu, India 2. ABSTRACT: Activated carbon was developed from TyphaAngustata L, characterized and used for the removal of Rhodamine B from waste water successfully. Rhodamine B is one of the water soluble, basic red cationic Xanthene class dyes, a common water tracer fluorescent. Batch adsorption experiments were carried out as a function of P H,contact time, initial concentration of the adsorbate, adsorbent dosage and temperature. The experimental data were analyzed using the pseudo second order kinetic model. The equilibrium data satisfied by Langmuir Isotherm models. The changes in standard free energy (ΔGº), Standard Entropy(ΔSº) Standard enthalphy (ΔHº) were calculated. The thermodynamic study has showed that the dye adsorption phenomenon onto AC-MnO 2 -NC was favorable, endothermic and spontaneous. KEYWORDS: AC-MnO 2 -NC, Rhodamine-B, Adsorption isotherm, Kinetics, Equilibrium. I. INTRODUCTION Among the different pollutants of aquatic ecosystem, dyes are a large and important group of industrial chemicals for which world production in 1978 was estimated at 640,000 tons[1]. Dyes arc widely used in industries such as textiles, rubber, paper, plastic, cosmetics, etc to color their products.the dyes are invariably left as the major waste in these industries. Synthetic dyes are used extensively in many industries including dye houses, paper prints and textile dyers. A significant proportion of synthetic dyes are lost annually to waste streams during textile processing, which eventually enters the environment [2]. Some of dyes are toxic and carcinogenic and require separation and advanced treatment of textile effluents before discharge into conventional systems [3]. Due to biodegradability of dyes, a conventional biological waste water treatment process is not very efficient in treating dye waste water. The removal of color from waste water can be accomplished by flotation, chemical coagulation,chemical oxidation and adsorption [4]. Hence investigations have been conducted on physicochemical methods of removing color from textile effluents [5]. These studies include chemical oxidation [6],membrane filtration[7] and adsorption techniques[8].in these techniques adsorption has been found to be an efficient process to remove dye. Activated carbon [9] and natural adsorbents such as banana and orange peel [10], apple pomace and wheatstraw [11], waste mud [12], wood materials [13],Jambonut[14] and BorassusflabelliferL[15] have been extensively used as adsorbents. Activated carbon adsorption has been found to be an effective means of waste water treatment. Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 497

Adsorption hold promise in the treatment of waste water as it is inexpensive simply designed, easy to handle. The aim of this study was to use the dried AC-MnO 2 -NC to remove one important reactive dye, RhodamineB (RhB) from aqueous solution. RhodamineB(RhB)is one of the water soluble xanthene class dyes, a basic red cationic dye which is a common water tracer fluorescent. It is often used textile and food industries. II. MATERIALS AND METHODS 2.1 Adsorbate Basic dye used in this study is Rhodamine B purchased from S.d. fine chemicals, Mumbai, India. RhB has molecular formula-c 28 H 31 ClN 2 O 3.The dye concentration in supernatant solution was determined at characteristic wavelength [λ max =543nm] by double beam UV-visible spectrophotometer [Systronics 2202]. 2.2. Preparation of Activated Carbon The TyphaAngustata L plant materials were collected from local area situated at Thindal, Erode District, Tamilnadu. They were cut into small pieces and dried for 20 days. Finally it was taken in a steel vessel and heated in muffle furnace. The temperature was raised gradually upto 500 0 c and kept it for half an hour. The carbonised material was ground well and sieved to different particle size. It was stored in a plastic container for further studies. In this study particle size of 0.15 to 0.25mm was used. 2.3. Preparation of AC-MnO 2 -NC Activated Carbon [3gm] was allowed to swell in 15mL of water-free Alcohol and stirred for 2 hours at 25 0 C to get uniform suspension. At the same time, the Maganese dioxide [3gm] was dispersed into water-free Alcohol [15mL]. Then the diluted Maganese dioxide was slowly added into the suspension of activated Carbon and stirred for a further 5 hours at 25 0 C.To this, 5mL alcohol and 0.2mL of deionised water was slowly added. The stirring was continued for another 5 hours at 25 0 C and the resulting suspension was kept overnight in a vacuum oven for 6 hours at 80 0 C. Characteristics of the AC-MnO 2 -NC were determined and the results are summarized in Table.1. Table.1. Physical and Chemical Properties of Adsorbents Physical and Chemical Properties AC-MnO 2 -NC [1]. Moisture content [%] [2]. Volatile matter [%] [3]. Ash [%] 9.19 62.73 17.15 2.3 Characteristion of Adsorbent Physico-Chemical characteristics of the adsorbents were studied as per the standard testing methods [16]. Figure 1, 2 shows the XRD pattern of pure AC and AC-MnO 2 -NC respectively. The peaks at 28 [Figure 1] and at 30 [Figure 2] confirm the presence of AC-MnO 2 phase in the nanocomposite. The surface morphology of the adsorbent was visualized via scanning electron microscopy [SEM] are shown in Figure 3 and 4. The diameter of the composite range was 10µm. FTIR spectra indicate the presence of Mn0 2 peak at 430cm -1. Figure 1. XRD analysis of Activated Carbon Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 498

Figure 2. XRD analysis of AC-MnO 2 -NC Figure 3. SEM of Activated Carbon Figure 4. SEM of AC-MnO 2 -NC 2.4 Batch adsorption method A stock solution [1000mg/L] of RhB was prepared by dissolving an appropriate amount of each dye in double distilled water, which was diluted to desired concentrations of 10, 20, 30 and 40mg/L. Batch adsorption [17] experiments were carried out to investigate the effect of P H, temperature, adsorbent dose, initial dye concentration, contact time on the adsorption of RhB on AC-MnO 2 -NC by varying the parameters under study and keeping other parameters constant. In each experiment pre weighed amount of adsorbent was added to 50mL of dye solution taken in a 150mL of conical flask and the ph was adjusted by using 0.1M NaOH or 0.1M HCL. The resulting solution was agitated at 200rpm on a stirrer at constant temperature and centrifuged [Remi Research Centrifuge]. The percentage removal of dye and amount of dye adsorbed on AC-MnO 2 -NC was calculated by equation [1] and equation [2] respectively. 100[C O-C e ] % removal = --------------- ---------> [1] C e [C o -C e ] V q e = ------------ -------------> [2] W Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 499

Where q e is the quantity of dye adsorbed on the adsorbent at the time of equilibrium [mg/g], C o and C e are the initial and equilibrium concentrations [mgl -1 ] of the dye in solution respectively, V is the volume [L] of solution and W is the weight of adsorbent [g]. All adsorption experiments were performed in triplicate and the mean values were used in data analysis. 2.5. Batch Kinetic Studies The batch kinetic [17] experiments were basically identical to these of adsorption equilibrium method. The amount of adsorption q t [mg/g] at time t, was calculated by, [C o - C t ]V q t = ------------------ --------> [3] W Where C t [mg/l] is the liquid phase concentration of dye at any time. III. THEORY OF ADSORPTION ISOTHERM To quantify the adsorption capacity of the adsorbent for the removal of dyes, the most commonly used isotherm, namely Freundlich, Langmuir and Tempkin have been adopted. 3.1. Freundlich Isotherm The linear form of Freundlich isotherm [18] is represented by the equation. logq e = logk f + 1/n logc e ---------------> [4] Where q e is the amount of dyes absorbed per unit weight of the adsorbent, [mg/l], k f is [mg/g [L/mg]] measures of adsorption capacity and 1/n is the adsorption intensity. In general k f Value increases the adsorption capacity for a given adsorbate increases. The magnitude of the exponent 1/n gives an indication of the favorability of adsorption. The value of n > 1 represents favorable adsorption condition [19,20] or the value of 1/n are lying in the range of 1 to 10 confirms the favorable condition for adsorption. The linear plot of logq e Vs logc e shows that the adsorption obeys the Freundlich model. 3.2. Langmuir Isotherm Langmuir isotherm model [21] is based on the assumption that maximum adsorption corresponds to a saturated monolayer of solute molecules on the adsorbent surface. The linear form of the Langmuir isotherm equation can be described by 1 Ce C e / q e = --------- + ------ ---------------> [5] Q o K L Q o Where C e [mg/l] is the equilibrium concentration of the adsorbate, q e [mg/g] is the amount of adsorbate adsorbed per unit mass of adsorbent, Q o and K L are Langmuir constants related to adsorption capacity and rate of adsorption respectively. Q o is the amount of adsorbate at complete monolayer coverage [mg/g] which gives the maximum adsorption capacity of the adsorbent and K L [L/mg] is the Langmuir isotherm constant that relates to the energy of adsorption [or rate of adsorption]. The linear plot of specific adsorption capacity C e /q e against the equilibrium concentration C e shows that the adsorption obeys the Langmuir model. The Langmuir constant Q o and K L were determined from the slope and intercept of the plot and are presented in Table 2. In order to find out the feasibility of the isotherm, the essential characteristics of the Langmuir isotherm can be expressed in terms of dimensionless constant separation factor R L [22, 23] by the equation, 1 R L = ---------- -----------> [6] 1 + K L C o Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 500

Where C o [mg/l] is the initial concentration of adsorbate and K L [L/mg] is Langmuir isotherm constant. The parameter R L indicate the nature of the adsorption isotherm. R L > 1 Unfavorable adsorption O< R L < 1 Favorable adsorption R L = O Irreversible adsorption R L = 1 Linear adsorption The R L values lies between 0 to 1 indicate the process is favorable adsorption. 3.3. Tempkin isotherm Tempkin isotherm contains a factor that explicitly takes into account adsorbing species-adsorbate interactions. This isotherm assumes that : [1]. The heat of adsorption of all the molecules in the layer decreases linearly with coverage due to adsorbate-adsorbate interactions, and [2] Adsorption is characterized by a uniform distribution of binding energies, up to some maximum binding energy [24]. Tempkin isotherm is represented by the following equation: q e =RT/b ln[ac e ] --------------> [7] equation [7] can be expressed in its linear form as: q e = RT/b lna+rt/b lnc e q e =B lna+blnc e --------------> [8] Where B=RT/b The adsorption data can be analysed according to equation [8]. A plot of q e VersuslnC e enables the determination of the isotherm constants A and B. A is the equilibrium binding constant [1/mol] corresponding to the maximum binding energy and constant B is related to the heat of adsorption. For RhB adsorption by AC-MnO 2 -NC and values of the parameters are given in Table [2]. IV. ADSORPTION KINETICS The study of adsorption kinetics describes the solute uptake rate and evidently this rate controls the residence time of adsorbate uptake at the Solid-Solution interface. The kinetics of RhB adsorption by the AC-MnO 2 -NC were analysed using Pseudo first-order, Pseudo second order, Elovich and intra particle diffusion model. The conformity between experimental data and the kinetic models was expressed by the correlation co-efficient [R 2 ] value, the R 2 values close or equal to 1. A relatively high R 2 value indicates that the model successfully describes the kinetics of RhB dye adsorption. 4.1. Pseudo first order kinetic model The linear form of Langergren s first order rate equation is as follows [25], ln [q e -q t ] = lnq e -K 1 t --------------> [9] Where q e is the amount of dye adsorbed onto the adsorbent at equilibrium [mg/g], q t is the amount of dye adsorbed on to the adsorbent at any time t[mg/g] and K 1 [min -1 ] is rate constant of the pseudo first order adsorption which can be calculated from the slope of the linear plot of ln[q e -q t ] Vs t [slope = K 1, q e = intercept]. The adsorption of pseudo first order rate constant and correlation coefficient [R 2 ] values are summarized in Table [3]. 4.2 Pseudo second order kinetic model The linearised form of the pseudo second order model as given by Ho [26] is t/q t =1/K 2 q e 2 + t/q e -------------->[10] Where K 2 [gmg -1 min -1 ] is the rate constant of the pseudo second order adsorption, qe is the amount of dye adsorbed on the adsorbent at equilibrium [mg/g], and q t is the amount of dye adsorbed on the adsorbent at any time, t [mg/g]. The plot of t/q t Vs t should give a linear relationship from which q e and K 2 can be determined from the slope and intercept Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 501

of the plot respectively. The pseudo second order rate constant K 2, the correlation coefficient [R 2 ] values are summarized in Table [3]. 4.3. Elovich model The elovich model equation is generally expressed as [27] q t = 1/β ln[αβ] + 1/β lnt --------------> [11] Where α- is the initial adsorption rate [mg g -1 min -1 ], β is the desorption constant [gmg -1 ] during any one experiments. A plot of q t Vslnt should yield a linear relationship with a slope of [1/β] and an intercept of 1/βln[αβ]. The elovich model parameters α, β and correlation coefficient [R 2 ] are summarized in Table [3]. 4.4. Intraparticle diffusion model The intraparticle diffusion model used here refers to the theory proposed by Weber and Morris [28] based on the following equation for the rate constant q t = K id t 1/2 + C --------------> [12] Where K id is the intraparticle diffusion rate constant [mg g -1 min -1/2 ] and C is constant. If the rate limiting step is intraparticle diffusion, the graphical representation of adsorbed dye q t [mgg -1 ] depending on the square root of the contact time [t 1/2 ] should yield a straight line passing through the origin [40]. The plot of q t Vs t 1/2 will give the value of the intraparticle diffusion rate constant [K id ] and correlation coefficient [R 2 ] can be determined from the slope respectively. The intraparticle diffusion rate constant K id, the correlation co-efficient [R 2 ] values are summarized in Table [3]. V. THERMODYNAMIC TREATMENT OF THE ADSORPTION PROCESS The effect of temperature on the adsorption of RhB by AC-MnO 2 -NC adsorbents were investigated at 303, 313, 323 and 333K. Thermodynamic parameters, such as change in enthalpy [ΔH ], entropy [ΔS ] and Gibb s free energy [ΔG ] were determined for the MG by AC-MnO 2 -NC using equation [13] & [14]. [29]. ln [q e m/c e ] = ΔS /R - ΔH /RT ----------> [13] ΔG = ΔH - T ΔS ---------------> [14] Where m is the adsorbent dose [mg/l], C e is the equilibrium concentration [mg/l] of the dye in solution and q e m is the solid-phase concentration [mg/l] at equilibrium. R is the gas constant [8.314J/mole/K] and T is the temperature [K]. ΔH, ΔS and ΔG are changes in enthalpy [KJ/mol], entropy [J/mol/K] and Gibb s free energy [KJ/mol] respectively. The values of ΔH and ΔS were determined from the slope [-ΔH /R] and the intercept [ΔS /R] of the plots of ln [q e m/c e ] Vs 1/T. The ΔG values were calculated by using equation [14]. The values of the thermodynamics parameters are presented in Table [4]. VI. RESULTS AND DISCUSSIONS 6.1. Effect of Agitation time Vs initial dye concentration Effect of Agitation time Vs initial dye concentration [10, 20, 30 and 40 mg/l] on removal of RhB by AC-MnO 2 -NC are shown in Figure 5. The percent removal of RhB increased with increase in agitation time and reached equilibrium at 210min. The percent dye removal at equilibrium decreased from 78.23 to 99.23 as the dye concentration was increased from 10 to 40 mg/l. It is clear that the removal of dye depends on the initial concentration of the dye. The removal curves are single, smooth and continuous leading to saturation. Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 502

% of Removal % of Removal ISSN(Online) : 2319-8753 130.00 80.00 30.00 0 100 200 300 Time,min 10ppm 20ppm 30ppm 40ppm Figure 5.Effect of Agitation Time Vs initial concentration of RhB by AC MnO 2 -NC 6.2. Effect of adsorbent dosage The removal of RhB by AC MnO 2 -NC at different adsorbent dosage are shown in Figure.6. [10mg to 600mg/50mL] was tested for the dye concentrations 10, 20, 30 and 40mg/L. The adsorption increases with increase in adsorbent concentration; this is due to the increase in surface area and availability of more adsorption site. The percentage removal of RhB is greatly increases in the range of 10-600mg/50mL after that small change occur. So the optimum adsorbent carbon dosages for the experiments were carried out using 100mg/50mL. 110.00 90.00 70.00 50.00 30.00 10.00 0 100 200 300 400 500 600 Adsorbent Dosage,mg/g 10ppm 20ppm 30ppm 40ppm Figure 6. Effect of Adsorbent Dosage of RhB by AC-MnO2-NC 6.3. Effect of ph Effects of ph on the removal of RhB by AC-MnO2-NC are shown in Figure.7. The solution ph is one of the most important factors that control the adsorption of RhB on the adsorbent material. Therefore an increase in ph may cause an increase [or] decrease in the adsorption capacity. The adsorption capacity can be attributed to the chemical form of RhB in a solution at the specific ph [or] due to different functional group on the adsorbent surface. To examine the effect of ph on the percentage removal of RhB gradually increases as the ph increases. The ph value up to 8.95 the percentage removal is up to 59.32 after that suddenly increases. At that solution ph the adsorbent surface negatively charged and favors uptake of cationic dyes due to increased electrostatic force of attraction. Therefore, all the experiments were carried out at the ph 8.95. For 40mg/L dye concentration the percent removal increased from 34.46 to 64.76 when the ph was increased from 2 to 14 and the percent removal remained almost the same above ph 9. Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 503

% of Removal % of Removal ISSN(Online) : 2319-8753 70.00 60.00 50.00 40.00 30.00 20.00 0 2 4 6 8 10 12 14 40ppm ph Figure7. Effect of ph of RhB by AC-MnO2-NC 6.4. Effect of Temperature The effect of temperature of adsorption of RhB are presented in Figure 8. For concentration 40 mg/l adsorbent was carried out at 30, 40, 50 and 60 C. The percent removal of dye increased from 20.04 to 77.73. This indicates that increase in adsorption with increase in temperature may be due to increase in the mobility of the large dye ions. Moreover, increasing temperature may produce a swelling effect within the internal structure of the adsorbent, penetrating the large dye molecule further. 90.00 70.00 50.00 30.00 10.00 0 100 200 300 400 30 C 40 C 50 C 60 C Time,min Figure 8. Effect of Temperature of RhB by AC-MnO2-NC 6.5. Adsorption isotherms Three different isotherm models were used to fit the experimental data the Langmuir, Freundlich and Tempkin models are given in Figure. 9, 10 and 11 and the parameter values are given in the Table 2. C e /q e 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0.00 2.00 4.00 6.00 8.00 y = 0.013x + 0.029 R² = 0.999 30 C C e Figure 9. Plot of Langmuir isotherm Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 504

q e (mg/g) logq e 1.80 1.70 1.60 1.50 1.40 1.30 y = 0.423x + 1.417 R² = 0.981 0.00 0.50 1.00 30 C logc e Figure 10. Plot of Freundlich isotherm 60.00 50.00 40.00 30.00 20.00 y = 17.61x + 23.54 R² = 0.998 0.00 0.50 1.00 1.50 2.00 lnc e Figure 11. Plot of Tempkin isotherm 30 C Table.2. Langmuir, Freundlich and Tempkin isotherm parameter for adsorption of RhB by AC-MnO 2 -NC adsorbent Langmuir Freundlich Tempkin Initial dye concen tration mg/l Q 0 [mg /g] K L [L/g] R 2 R L K f [mg/g/ [L/g]] n R 2 A b B R 2 60 0.0074 80 76.92 3 2.230 0.999 0.0057 100 0.0044 120 0.0037 26.121 2.364 0.981 3.8064 140.69 17.61 0.998 From the Table.2, it is clear that, the Langmuir isotherm constant value indicate the adsorption capacity Q 0 = 76.923 mg/g. The Langmuir isotherm can also be expressed in terms of a dimensionless constant separation factor [R L ]. The R L Value lies in between 0 to 1 indicate the adsorption is favorable for all the initial dye concentration. Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 505

log(q e -q t ) ISSN(Online) : 2319-8753 From the Table.2, it is clear that, the Freundlich isotherm constant value indicate 1/n [or] n is the adsorption intensity. The n values lies in between 1 to 10 confirm the favorable condition for adsorption. From the table.1, it is clear that, the Tempkin isotherm constant value indicate maximum binding energy B= 17.61 and it is related to the heat of adsorption. All the three models explain correlation co-efficient [R 2 ]. From Table.2, RhB on AC-MnO 2 -NC to fit Langmuir model. This indicates monolayer adsorption. 6.6. Adsorption Kinetics The kinetics of MG dye adsorption on RhB by AC-MnO 2 -NC was studied with respect to different initial concentration. For evaluating the adsorption kinetics if RhB, the Pseudo first order, the pseudo second order, Elovich model and intraparticle diffusion model were used to fit the experimental data by using linear regression analysis method and it is given in Figure.12, 13, 14 and 15. The parameters of this model are summarized in Table.3. The high correlation coefficient [R 2 ] values indicate the fitness of the model. 1.500 1.000 0.500 0.000-0.500-1.000 y = -0.005x + 1.053 y = -0.004x + 1.082 R² = 0.847 R² = 0.935 y = -0.004x + 0.952 R² = 0.914 10ppm 0 100 200 300 400 Time,min 20ppm 30ppm 40ppm y = -0.004x + 0.880 R² = 0.889 Figure.12 Pseudo first order kinetic model t/q t 12.000 10.000 8.000 6.000 4.000 2.000 0.000 y = 0.019x + 0.147 R² = 0.999 y = 0.023x + 0.240 R² = 0.999 y = 0.028x + 0.271 R² = 0.999 10ppm y = 0.035x + 0.367 0 100 200 300 400 R² = 0.998 Time,min 20ppm 30ppm 40ppm Figure.13 Pseudo second order kinetic model Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 506

q t (mg/g) ISSN(Online) : 2319-8753 t/q t 60.00 50.00 40.00 30.00 20.00 10.00 0.00 y = 0.837x + 36.83 R² = 0.944 Figure.14 Intraparticle diffusion model y = 0.885x + 28.29 R² = 0.934 y = 0.660x + 24.19 R² = 0.956 10ppm 20ppm 30ppm 40ppm 0.00 3.00 6.00 9.00 12.0015.0018.0021.00 y = 0.571x + 18.53 t 1/2 R² = 0.951 60.00 y = 3.676x + 29.11 y = 3.874x + 20.19 50.00 R² = 0.959 y = R² 2.870x = 0.940 + 18.23 40.00 R² = 0.952 10ppm 30.00 20ppm 20.00 30ppm 10.00 40ppm 1.00 2.00 3.00 4.00 5.00 6.00 y = 2.516x + 13.23 lnt R² = 0.971 Figure.15 Elovich model Initial dye conce ntrati on Table.3. The kinetic parameter for the adsorption of RhB by AC-MnO 2 -NC adsorbent. Pseudo first order Pseudo second order Intraparticle Elovich diffusion q e ex q e cal K 1 R 2 q e exp q e ca K 2 R 2 K id C R 2 α β R 2 p l 10 99.23 11.29 79 1.151 x 10-2 0.847 99.23 52.6 31 2.455 x 10-3 0.999 0.83 7 36.8 3 0.918 10197.521 0.27 24 0.959 20 84.57 12.07 81 9.212x 10-3 0.935 84.57 43.4 78 2.204 x10-3 0.999 0.88 5 28.2 9 0.929 710.0 9 0.25 81 0.940 30 69.47 8.953 6 9.212 x 10-3 0.914 69.47 35.7 14 2.893 x10-3 0.999 0.66 0 24.1 9 0.957 1645. 336 0.34 84 0.952 40 55.40 7.585 7 9.212 x 10-3 0.889 55.40 28.5 71 3.337 x10-3 0.998 0.57 1 18.5 3 0.937 483.1 85 0.39 74 0.971 Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 507

ln(q e *m/c e ) ISSN(Online) : 2319-8753 From the kinetic data, the q e value calculated from the pseudo first order model is less than that of the experimental value. But the q e values calculated from the pseudo second order model are nearly equal to the experimental value. The correlation co-efficient [R 2 ] is high for pseudo second order. So that the adsorption of RhB by AC- MnO 2 -NC is to follow the pseudo second order kinetic model. The experimental data were used for intraparticle diffusion model, the intraparticle diffusion constant [K id ], intercept and the correlation co-efficient [R 2 ] are calculated. From these data the intercept value indicates that the lines are not passing through origin, therefore some other process that may affect the adsorption. The correlation co-efficient [R 2 ] is value is less than that of pseudo second order model. The same experimental Tata were used for Elovich model, the initial adsorption rate [α], desorption constant [β] and the correlation co-efficient [R 2 ] are calculated. But, the correlation Co-efficient [R 2 ] is less than that of pseudo second order model. Finally, From Table.3 indicates all these four kinetic models, RhB by AC- MnO 2 -NC is to follow pseudo second order kinetic model. 6.7. Thermodynamic parameter The Thermodynamic parameters for the adsorption process of RhBby AC-MnO 2 -NC are the changes in standard free energy change [ΔG 0 ], standard enthalpy change [ΔH 0 ] and standard entropy change [ΔS 0 ] and is shown in Fig.16. The values of these parameters were calculated and are shown intable.3 2.5 2 1.5 1 0.5 0 y = -5051.x + 17.09 R² = 0.999 30 C 0.00295 0.00305 0.00315 0.00325 0.00335 1/T Fig.16. Thermodynamic parameter Table.4. Thermodynamic parameter values of RhB by AC-MnO 2 -NC ΔGº[kJ/mol] ΔSº [J/mol/K] ΔHº [kj/ mol] 303K 313K 323 K 333 K -43.0101-44.4309-45.8518-47.2727 142.0862 41.9940 Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 508

The adsorption data indicates that ΔG values were negative at all temperatures. The negative ΔG confirms the spontaneous nature of adsorption of RhB by AC-MnO 2 -NC. The magnitude of ΔG suggests that adsorption is physical adsorption process. The positive value of ΔH were further confirms the endothermic nature of adsorption process. The positive ΔS showed increased randomness at the solid solution interface during the adsorption of RhBby AC-MnO 2 - NC adsorbent. VII. DESORPTION STUDIES After activated carbon is saturated with dye molecules, different solvents could be used to regenerate the activated carbon to restore its dye adsorptive capability [30]. Desorption with acetic acid revealed that the regeneration of adsorbent was satisfactory, which confirms the physisorptive nature of adsorption. VIII. CONCLUTIONS The present study shows that AC-MnO 2 -NC is an effective adsorbent for the removal of RhB from aqueous solution. Adsorption followed the Langmuir isotherms. The adsorption capacity was found to be 76.923 mgg -1. The thermodynamic parameters were found to be thermodynamically favourable physical adsorption process. Evaluation of thermodynamic parameters showed the process as endothermic and spontaneous. The kinetic parameters fit for Pseudo second order model. Desorption studies reveals that satisfactory desorption taking place confirming physisorptive nature of adsorption. Complete removal of the dye can be achieved using an appropriate dosage of the adsorbent and ph for waste waters. The results would be useful for the fabrication and designing of waste water treatment plants for the removal of dye. Since the raw material is freely available in large quantities the treatment method, seems to be economical. REFERENCES [1] Clarke, E.A., Anliker, R.,Organic dyes and pigments., in the Handbook of Environmental chemistry part A. Anthropogenic compounds. Hutzinger.O.(Ed). Springer Verlag, Heidelberg, vol.3, pp.181-215, 1980. [2] Hu, T.L., Removal of reactive dyes from aqueous solution by different bacterial genera,wat.sci.technol, vol. 34,pp. 89-95,1996. [3] Brown, M.A., Crit, Predicting azo dye Toxicity, Rev.Envirion. Sci. Technol, vol.23, pp.24, 1993. [4] Zhou, W, Zimmermann,W, Decolourisation of industrial effluents containing reactive dyes by actinomycetes, FEMS Microbiol,Lett,vol.107, pp.157-16, 1993. [5] Banat, I.M., Nigam, P., Singh D., and Marchent,R., Microbial decolourisation of textile dye containing effluent,bioresource Technol, vol, 58,pp. 217 227, 1996. [6] Arslon, I., Balcioglu I.A., and Bahnemann, D.W.,Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents of ferrioxalate-fenton/uv-a and TiO 2/UV-A Processes, Dyes Pigments,vol, 47, pp, 207-218, 2000. [7] Purkait, M.K., Dasgupta S., and De,S., Removal of dye from waste water using micellar enchanced ultrafiltration and recovery of surfactant,sep.purif.technol, vol,37, pp. 81-92, 2004. [8] Garg, V.K., Kumar, R., and Gupta, R., Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste,dyes Pigments,vol, 62, pp, 1-10, 2004. [9] Perieira, M.F.R., Soares, S.F., orfao, J.J.M.,and Figueiredo, J.L.,Adsorption of Dyes on Activated Carbons:Influence of surface chemical Groups, Carbon, vol,41, pp,811-821, 2003. [10] Annadurai, G., Juang,R.,and Lee, D., Use of cellulose-based wastes for adsorption of dyes from aqueous solutions,j.haz. Mat,vol, B92, pp, 263 274,2002. [11] Robinson, T., Chandran, B., and Nigam, P.,Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw, Water Res, vol,36,pp, 2824-2830,2001. [12] Namasivayam, C., and Arasi, S.E.,Removal of Congo red from waste water by adsorption onto waste red mud, Chemosphere, vol,34(2), pp,401 417,1997. [13] Mckay, G.,and Poots, V.J.P., J.chem. Technol. Bio tecnol., 30(1980) 279-292. [14] Kumar, P.E., Studies on characteristics and Fluoride removal capacity of Jambonut Carbon. M.Phil.,Disseration: BharathiarUniversity, Coimbatore, 1991,Tamilnadu, India. [15] Kumar, P.E., Perumal, V. ost Novel Adsorbent Derived from the Inflorescence of Palmyra (Borassusflabellifer L.) Male Flowers.Nature Environment and Pollution,vol, 9 [3],pp, 513-518, 2010. [16] Waranusantigul, P., Kinetics of basic dyes biosorption by giant duckweed, Environ Pollu,vol,125, pp, 385-392, 2003. [17] Hameed, B.H.,Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue, J. of Hazard.Mater,vol,162, pp, 939, 2009. [18] Freundlich, H.Z., Adsorption in solution, phys. chem. 57[1906] 384. [19] Treybal, R.E., Mass transfer operations, second ed., McGrw Hill, NewYork[1968]. [20] Ho, Y.S., Mckay,G.,Sorption of dye from aqueous solution by peat, Chemical Engineering Journal,vol, 70, pp,115, 1998. Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 509

[21] Langmuir, I.,Adsorption of gases on plane surfaces of glass,mica and platinum, Journal of American Chemical Society,vol,57, pp,1361,1918. [22] Ferrero, F.,Dye removal by low cost adsorbents:hazelnut shells in comparison with wood saw dust,journal of Hazardous Materials,vol,142, pp,144,2007. [23] Mckay, G., Blair, H.S., Gardner, J.R.,Adsorption of dyes on chitin:1.equilibrium studies, Journal of Applied Polymer Science.vol, i.27,pp, 3043, 1982. [24] Tempkin, M.J., Pyzhev, V., Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim URSS,vol,12,pp, 217-22,1940. [25] Langergren, S.,Zu theorie der so genannten adsorption geloster stoffe. Kungliga.Svenska.Vetenskapsakademies. Handlinger,vol,24,No.4,1898. [26] Ho, Y.S., Mckay, G., The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Research,vol,34,pp, 735, 2000. [27] Sparks,D.L, Kinetics of Reaction in pure and mixed systems in soil physical chemistry. CRC press, BocaRaton,1986. [28] Weber, W.J., Morris, J.C.,Kinetics of adsorption on carbon from solution, Journal of Sanitary Engineering Division,vol,90,pp,79, 1964. [29] Nandi, B.K., Goswami, A., Purkait, M.K., Adsorption characteristics of brilliant green dye onkaolin.j. Hazard.Mater,vol,161,pp, 387-395, 2009. [30] Bai, X., Yuan, F.S., Zhang, T., Wang, J.X., Wang, H., Zhang, W.Z., Joint effect of Formaldehyde and xylene on mouse bone marrow cells. Journal of Environment and Health, vol,29,no.1, pp, 51 54, 2012. Copyright to IJIRSET DOI: 10.15680/IJIRSET.2015.0402039 510