Topic 5:Discrete-Time Fourier Transform (DTFT)

Similar documents
Topic 5: Discrete-Time Fourier Transform (DTFT)

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Lectures 9 IIR Systems: First Order System

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

Digital Signal Processing, Fall 2006

15/03/1439. Lectures on Signals & systems Engineering

Chapter 4 - The Fourier Series

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance.

Discrete Fourier Transform (DFT)

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser

GUC (Dr. Hany Hammad) 4/20/2016

PURE MATHEMATICS A-LEVEL PAPER 1

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University

O QP P. Limit Theorems. p and to see if it will be less than a pre-assigned number,. p n

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

International Journal of Mathematical Archive-7(5), 2016, Available online through ISSN

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5)

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

PREPARATORY MATHEMATICS FOR ENGINEERS

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Problem Value Score Earned No/Wrong Rec -3 Total

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

ELEC9721: Digital Signal Processing Theory and Applications

DFT: Discrete Fourier Transform

H2 Mathematics Arithmetic & Geometric Series ( )

Signals & Systems - Chapter 3

VI. FIR digital filters

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Chapter 2 Linear Waveshaping: High-pass Circuits

Chapter 3 Fourier Series Representation of Periodic Signals

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

1985 AP Calculus BC: Section I

Probability & Statistics,

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Lecture 26: Quadrature (90º) Hybrid.

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

A Review of Complex Arithmetic

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht.

Introduction to Medical Imaging. Lecture 4: Fourier Theory = = ( ) 2sin(2 ) Introduction

The Phase Probability for Some Excited Binomial States

Frequency Response & Digital Filters

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

EC1305 SIGNALS & SYSTEMS

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

LECTURE 5 Guassian Wave Packet

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

ln x = n e = 20 (nearest integer)

Fourier Series: main points

Fourier Series & Fourier Transforms

A Propagating Wave Packet Group Velocity Dispersion

A Simple Proof that e is Irrational

Response of LTI Systems to Complex Exponentials

+ x. x 2x. 12. dx. 24. dx + 1)

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS

Partition Functions and Ideal Gases

10. Joint Moments and Joint Characteristic Functions

MATH Midterm Examination Victor Matveev October 26, 2016

Law of large numbers

Solution to 1223 The Evil Warden.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

Frequency Measurement in Noise

SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS. FIGURE 1: Temperature as a function of space time in an adiabatic PFR with exothermic reaction.

NET/JRF, GATE, IIT JAM, JEST, TIFR

APPENDIX: STATISTICAL TOOLS

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Ordinary Differential Equations

Types of Transfer Functions. Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters

Chapter 5. Root Locus Techniques

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Digital Signal Processing

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

10. The Discrete-Time Fourier Transform (DTFT)

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Chapter 3. Hence, 3.2 (a) ( ) dt. (b) (d) using the. linearity property of the CTFT. Next, using the shifting property of the CTFT we get

Study of Energy Eigenvalues of Three Dimensional. Quantum Wires with Variable Cross Section

ECE351: Signals and Systems I. Thinh Nguyen

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

DISCRETE TIME FOURIER TRANSFORM (DTFT)

Session : Plasmas in Equilibrium

Periodic Structures. Filter Design by the Image Parameter Method

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others

Lecture 27: The 180º Hybrid.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Restricted Factorial And A Remark On The Reduced Residue Classes

Transcription:

ELEC64: Sigals Ad Systms Tpic 5:Discrt-Tim Furir Trasfrm DTFT Aishy Amr Ccrdia Uivrsity Elctrical ad Cmputr Egirig Itrducti DT Furir Trasfrm Sufficit cditi fr th DTFT DT Furir Trasfrm f Pridic Sigals DTFT ad LTI systms: Frqucy rsps Prprtis f DT Furir Trasfrm Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds Figurs ad xampls i ths curs slids ar ta frm th fllwig surcs: A. Opphim, A.S. Willsy ad S.H. Nawab, Sigals ad Systms, d Editi, Prtic-Hall, 997 M.J. Rbrts, Sigals ad Systms, McGraw Hill, 004 J. McCllla, R. Schafr, M. Ydr, Sigal Prcssig First, Prtic Hall, 003

Furir rprstati A Furir fucti is uiqu, i.., tw sam sigals i tim giv th sam fucti i frqucy Th DT Furir Sris is a gd aalysis tl fr systms with pridic xcitati but cat rprst a apridic DT sigal fr all tim Th DT Furir Trasfrm ca rprst a apridic discrt-tim sigal fr all tim Its dvlpmt fllws xactly th sam as that f th Furir trasfrm fr ctiuus-tim apridic sigals

Ovrviw f Frqucy Aalysis Mthds 3

Ovrviw f Furir Aalysis Mthds Pridic i Tim Discrt i Frqucy Apridic i Tim Ctiuus i Frqucy Ctiuus i Tim Apridic i Frqucy CT Furir Sris : a x t T T 0 x t a 0 t 0 t dt CT - P CT IvrsFurir Sris : T DT DT CT - P T CT Furir Trasfrm: X x t x t X t dt t d CT IvrsCT Furir Trasfrm: CT CT CT Discrt i Tim Pridic i Frqucy DT Furir Sris X x N N 0 x IvrsDT Furir Sris N 0 0 X DT - P 0 N DT - P DT - P N N DT - P N DT Furir Trasfrm: X IvrsDT Furir Trasfrm: x x X d DT CT CT P P DT 4

Ovrviw f Furir symbls Variabl Prid Ctiuus Frqucy DT x N Discrt Frqucy / N CT xt t T / T 5 DT-FT: Discrt i tim; Apridic i tim; Ctius i Frqucy; Pridic i Frqucy DT-FS: Discrt i tim; Pridic i tim; Discrt i Frqucy; Pridic i Frqucy CT-FS: Ctiuus i tim; Pridic i tim; Discrt i Frqucy; Apridic i Frqucy CT-FT: Ctiuus i tim; Apridic i tim; Ctius i Frqucy; Apridic i Frqucy

Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 6

7 DT Furir Trasfrm DT Furir trasfrm ad th ivrs FT FT dscribs which frqucis ar prst i th rigial fucti Th rigial sigal ca b rcvrd frm wig th Furir trasfrm, ad vic vrsa Th fucti X ω is pridic i ω with prid π Th fucti ω is pridic with N=π d X x x X, f x f X x X : Frms

8 DT Furir Trasfrm DT sigal rprstatis: A sum f scald, dlayd impuls A liar cmbiati f wightd siusidal sigals x x d X x

DT Furir Trasfrm: Drivati Lt x b th apridic DT sigal W cstruct a pridic sigal x fr which x is prid x is cmprisd f ifiit umbr f rplicas f x Each rplica is ctrd at a itgr multipl f N N is th prid f x Csidr th fllwig figur which illustrats a xampl f x ad th cstructi f Clarly, x is dfid btw N ad N Csqutly, N has t b chs such that N > N + N + s that adact rplicas d t vrlap Clarly, as w lt as dsird 9

DT Furir Trasfrm: Drivati Lt us w xami th FS rprstati f Sic x is dfid btw N ad N a i th abv xprssi simplifis t 0 ω = π/n

DT Furir Trasfrm: Drivati Nw dfiig th fucti W ca s that th cfficits a ar rlatd t X ω as whr ω 0 = π/n is th spacig f th sampls i th frqucy dmai Thrfr As N icrass ω 0 dcrass, ad as N th abv quati bcms a itgral

DT Furir Trasfrm: Drivati O imprtat bsrvati hr is that th fucti X ω is pridic i ω with prid π Thrfr, as N, Nt: th fucti ω is pridic with N=π This lads us t th DT-FT pair f quatis

DT Furir Trasfrm: Exampls x X r r Th pridic impuls trai Lt x a u a X a 3

DT Furir Trasfrm: Exampls Apridic Pridic 4

5 Furir trasfrm pairs

Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 6

Sufficit cditi fr DTFT Cditi fr th cvrgc f th ifiit sum X x x x If x is abslutly summabl, its FT xists sufficit cditi 7

8 Exampl: Exptial squc DTFTds t xist : : : a X a a X a u a x

Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 9

FT f Pridic DT Sigals Csidr th ctiuus tim sigal This sigal is pridic Furthrmr, th Furir sris f this sigal is ust a impuls f wight ctrd at ω= ω 0 Nw csidr this sigal It is als pridic ad thr is impuls pr prid Hwvr, th sparati btw adact impulss is π I particular, th DT Furir Trasfrm fr this sigal is 0 DTFT f a pridic sigal with prid N X X ; N

DTFT: Pridic sigal Th sigal ca b xprssd as W ca immdiatly writ Equivaltly prid π

DT FT f pridic sigals FS vs. FT

Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 3

Cmplx umbrs *Cartsia rprstati : z x y Magitud f It is is * Plar rprstati : Cmplx Cugat : z Phasargumtf ca chagby ay multipl radias t dgrsar big usd z * * * 4 z x y ; z z ad zz ar ral r th distacf th agl t thral psitiv z a z z x f y pit z frm th rigi z z axis ad still cs ta y x giv z si thsamagl

Prprtis f th DTFT Th fucti ω is pridic with N=π 5

6 Prprtis f th DTFT

7 Prprtis f th DTFT

8 Exampl: Tim shift Dtrmiig th DTFT f Sluti F a a X u a x a x a X X u a x x a X u a x 5 i.. 5 i.. 5 5 5 5 5 5 5 5 u a x

9 Prprtis f th DTFT

30 Prprtis f th DTFT

3

Symmtry prprtis f th DTFT

Symmtry prprtis f th DTFT Duality prprty

34 Prprtis f th DTFT

Prprtis f th DT FT Accumulati : m m - - xm xm - - ω whr thimpuls trai thright - had sid rflcts th avrag valur dc cmptthat may rsult frm thsummati f X ω Xf πx 0 m X 0 cmb f δω πm 35 Trai f impulss cmb

36 Prprtis f th DT FT

37 Prprtis f th DT FT

38 Prprtis f th DT FT

39 Prprtis f th DT FT

40 Prprtis f th DT FT

4 Prprtis f th DT FT * impuls rspsh: a LTI systmwith fr It fllws: Multiplicati & Cvluti duality : X H Y x h y Y X y x Y X y x

4 Prprtis f th DT FT

43 Prprtis f th DT FT

Prprtis f th DT FT: Diffrc quati DT LTI Systms ar charactrizd by Liar Cstat-Cfficit Diffrc Equatis A gral liar cstat-cfficit diffrc quati fr a LTI systm with iput x ad utput y is f th frm Nw applyig th FT t bth sids f th abv quati, w hav But w w that th iput ad th utput ar rlatd t ach thr thrugh th impuls rsps f th systm, dtd by h, i.., 44

Prprtis f th DT FT : Diffrc quati Applyig th cvluti prprty if is giv a diffrc quati crrspdig t sm systm, th FT f th impuls rsps f th systm ca fud dirctly frm th diffrc quati by applyig th Furir trasfrm FT f th impuls rsps = Frqucy rsps Ivrs FT f th frqucy rsps = Impuls rsps 45

Prprtis f th DT FT: Exampl With a <, csidr th causal LTI systm that is charactrizd by th diffrc quati Th frqucy rsps f th systm is Frm tabls r by applyig ivrs FT, w gt 46

47 Tabl.

Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 48

49 Frqucy rsps f LTI systms If iput is cmplx xptials Dfi h & H: Frqucy ad impuls rspss ar a FT pair h h T y x } { H y h H d H X y d X x if

50 Frqucy rsps Th frqucy rsps f discrt-tim LTI systms is always a pridic fucti f th frqucy variabl w with prid Oly spcify vr th itrval Th lw frqucis ar cls t 0 Th high frqucis ar cls t Frqucy rsps is grally cmplx H h h H H I R H H H H dscribs chags t x i magitud ad phas

5 Frqucy rsps: Exampl Frqucy rsps f th idal dlay systm d d I d R d d d H H H H H h x y d, si, cs Idaldlay :

5 Frqucy rsps FT pair & impuls rspssar a Frqucy rsps thfrqucy with ; Rsps: iput If Cvluti thrm: thimpuls rsps with ; systms: LTI Rspsf H H X X h x y x x h h y x

53 Frqucy rsps: Exampl

Idal frqucy-slctiv LTIsystms r filtrs Idal frqucy-slctiv filtr hav uity frqucy rsps vr a crtai rag f frqucis, ad is zr at th rmaiig frqucis Exampl: Idal lw-pass filtr: passs ly lw frqucis ad rcts high frqucis f a iput sigal x 54

Exampl : idal lwpass filtr Frqucy rsps H lp, 0, c c h lp c c d si c, h is t abslutly summabl Filtr causal 55

Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 56

DTFT: Summary DT Furir Trasfrm rprsts a discrt tim apridic sigal as a sum f ifiitly may cmplx xptials, with th frqucy varyig ctiuusly i -π, π DTFT is pridic ly d t dtrmi it fr 57

58 Summary: Sigal & Systm rprstatis Sigal: A sum f scald, dlayd impuls Sigal: A liar cmbiati f wightd siusidal sigals LTI systm: Cvluti LTI systm: Diffrc quati: x x d X x * y H X Y h x h x

59 Ral-wrld applicati: Imag cmprssi Ergy Distributi f trasfrm DCT Cfficits i Typical Imags

Ral-wrld applicatis: Imag cmprssi Imags Apprximatd by Diffrt Numbr f trasfrm DCT Cfficits Origial With 6/64 Cfficits With 8/64 Cfficits With 4/64 Cfficits 60 Wavfrm-basd vid cdig

DTFT: Summary Kw hw t calculat th DTFT f simpl fuctis Kw th gmtric sum: Kw Furir trasfrms f spcial fuctis,.g. δ, xptial Kw hw t calculat th ivrs trasfrm f ratial fuctis usig partial fracti xpasi Prprtis f DT Furir trasfrm Liarity, Tim-shift, Frqucy-shift, 6

6 DT-FT Summary: a quiz A discrt-tim LTI systm has impuls rsps Fid th utput y du t iput Sluti : Us th cvluti prprty: u h 7 u x * X H Y x h y, a a M u a m X H 7 ad

63 DT-FT Summary: a quiz ct. Usig partial fracti xpasi mthd f fidig ivrs FT givs: Thrfr, sic a FT is uiqu, i.. tw sam sigals i tim giv th sam fucti i frqucy ad sic It ca b s that a FT f th typ shuld crrspd t a sigal. Thrfr, th ivrs FT f is th ivrs FT f is Thus th cmplt utput 7 Y Y 7 / 5 7/5 a M u a m a a u 7 /5 7 5 u 7/5 5 7 u 5 7 7 5 u u y

Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 64

Trasiti: DT Furir Sris t DT Furir Trasfrm DT Puls Trai Sigal 65 This DT pridic rctagular-wav sigal is aalgus t th CT pridic rctagularwav sigal usd t illustrat th trasiti frm th CT Furir Sris t th CT Furir Trasfrm

Trasiti: DT Furir Sris t DT Furir Trasfrm DTFS f DT Puls Trai As th prid f th rctagular wav icrass, th prid f th DT Furir Sris icrass ad th amplitud f th DT Furir Sris dcrass 66

Trasiti: DT Furir Sris t DT Furir Trasfrm Nrmalizd DT Furir Sris f DT Puls Trai By multiplyig th DT Furir Sris by its prid ad plttig vrsus istad f, th amplitud f th DT Furir Sris stays th sam as th prid icrass ad th prid f th rmalizd DT Furir Sris stays at 67

Trasiti: DT Furir Sris t DT Furir Trasfrm Th rmalizd DT Furir Sris apprachs this limit as th DT prid apprachs ifiity 68

Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 69

Rlatis Amg Furir Mthds Pridic i Tim Discrt i Frqucy Apridic i Tim Ctiuus i Frqucy Ctiuus i Tim Apridic i Frqucy CT Furir Sris : a x t T T 0 x t a 0 t 0 t dt CT - P CT IvrsFurir Sris : T DT DT CT - P T CT Furir Trasfrm: X x t x t X t dt t d CT IvrsCT Furir Trasfrm: CT CT CT Discrt i Tim Pridic i Frqucy DT Furir Sris X x N N 0 x IvrsDT Furir Sris N 0 0 X DT - P 0 N DT - P DT - P N N DT - P N DT Furir Trasfrm: X IvrsDT Furir Trasfrm: x x X d DT CT CT P P DT 70

Rlatis Amg Furir Mthds 7

7 CT Furir Trasfrm - CT Furir Sris

73 CT Furir Trasfrm - CT Furir Sris

74 CT Furir Trasfrm - DT Furir Trasfrm

75 CT Furir Trasfrm - DT Furir Trasfrm

76 DT Furir Sris - DT Furir Trasfrm

77 DT Furir Sris - DT Furir Trasfrm