Dynamics of polar nanodomains and critical behavior of the uniaxial relaxor SBN

Similar documents
Phase Transitions in Relaxor Ferroelectrics

A Monte Carlo Study of the Specific Heat of Diluted Antiferromagnets

Monte Carlo studies of slow relaxation in diluted antiferromagnets

Soft Modes and Relaxor Ferroelectrics

High-frequency dielectric spectroscopy in disordered ferroelectrics

FERROELECTRIC PROPERTIES OF RELAXOR TYPE SBN SINGLE CRYSTALS PURE AND DOPED WITH Cr, Ni, AND Ce

What is the susceptibility?

Pressure as a Probe of the Physics of ABO 3 Relaxor Ferroelectrics

Chapter 3 Chapter 4 Chapter 5

PYROELECTRIC AND DIELECTRIC PROPERTIES OF CALCIUM-BARIUM NIOBATE SINGLE CRYSTALS O.V. Malyshkina 1, V.S. Lisitsin 1, J. Dec 2, T.

Critical Behavior I: Phenomenology, Universality & Scaling

Impedance Analysis and Low-Frequency Dispersion Behavior of Bi 4 Ti 3 O 12 Glass

PLEASE SCROLL DOWN FOR ARTICLE

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

Dielectric relaxation modes in bismuth-doped SrTiO 3 :

4 Results of the static and dynamic light scattering measurements

Effect of Ni doping on ferroelectric, dielectric and magneto dielectric properties of strontium barium niobate ceramics

An Introduction to Disordered Elastic Systems. T. Giamarchi

Fluctuations in the aging dynamics of structural glasses

PHASE TRANSITIONS AND CRITICAL PHENOMENA

Neutron and x-ray diffraction study of cubic [111] field-cooled Pb Mg 1/3 Nb 2/3 O 3

The Ising model Summary of L12

ELECTRONICS DEVICES AND MATERIALS

in three-dimensional three-state random bond Potts model (α >0f for a disordered d dsystem in 3D)

Supplementary Information

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care)

Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects

Phase transitions and finite-size scaling

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 26 Aug 2006

Critical speeding-up in magneto-electric spin-ice

Second harmonic generation in multi-domain χ 2 media: from disorder to order

arxiv:cond-mat/ v1 19 Sep 1995

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N

Aging, rejuvenation and memory: the example of spin glasses

CHAPTER-4 Dielectric Study

Statistical Mechanics of Jamming

New insights from one-dimensional spin glasses.

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France

Collective Effects. Equilibrium and Nonequilibrium Physics

Study on Magnetic Properties of Vermiculite Intercalation compounds

SUPPLEMENTARY INFORMATION

Ferroelectricity. Phase transition. Material properties. 4/12/2011 Physics 403 Spring

ON FRACTIONAL RELAXATION

Mott metal-insulator transition on compressible lattices

Dual Extraction of Photogenerated Electrons and Holes from a Ferroelectric Sr 0.5 Ba 0.5 Nb 2 O 6 Semiconductor

Micro-Brilouin scattering study of field cooling effects on ferroelectric relaxor PZN-9%PT single crystals

PLEASE SCROLL DOWN FOR ARTICLE. Full terms and conditions of use:

Polarization Reversal by Tip of Scanning Probe Microscope in SBN

The Power of Feedback: From Dielectric to Ferroelectric Systems

QENS in the Energy Domain: Backscattering and Time-of

arxiv:cond-mat/ v1 13 May 1999

Kibble-Zurek dynamics and off-equilibrium scaling of critical cumulants in the QCD phase diagram

Project B9. Lead-free (100-x)(Bi 1/2 Na 1/2 )TiO 3 x BaTiO 3 relaxor ferroelectrics characterized by 23. Na Nuclear Magnetic Resonance (NMR)

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Fractal Geometries and their Nonequillibrium Behaviour in Two Dimensional Ising Magnets

arxiv:cond-mat/ Jul 1996

University of New Mexico

Phase Transitions in Spin Glasses

Critical Region of the QCD Phase Transition

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 2 Apr 1998

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 25 Apr 2000

arxiv: v3 [cond-mat.stat-mech] 14 Feb 2013

Phase Transitions in Strontium Titanate

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Magnetic ordering, magnetic anisotropy and the mean-field theory

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart

Phase Transitions and the Renormalization Group

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

Thermo-optic properties of epitaxial Sr 0.6 Ba 0.4 Nb 2 O 6 waveguides and their application as optical modulator

arxiv:cond-mat/ v3 [cond-mat.dis-nn] 24 Jan 2006

Low temperature dynamics of magnetic nanoparticles

Cole-Cole Analysis of the Superspin Glass System Co 80 Fe 20 /Al 2 O 3

Cation Ordering and Dielectric Properties of PMN-PSN Relaxors

Effect of Diffusing Disorder on an. Absorbing-State Phase Transition

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

QCD critical point, fluctuations and hydrodynamics

Critical Behavior II: Renormalization Group Theory

Critical Dynamics of Two-Replica Cluster Algorithms

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

Microcanonical scaling in small systems arxiv:cond-mat/ v1 [cond-mat.stat-mech] 3 Jun 2004

AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS

Phase transitions and critical phenomena

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Monte Carlo simulation on dielectric and ferroelectric behaviors of relaxor ferroelectrics

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

The glass transition as a spin glass problem

Determination of the Distribution of the Relaxation Times from Dielectric Spectra

Magnetic Resonance in magnetic materials

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Linear excitations and domain walls

Phase Transitions in Disordered Systems: The Example of the 4D Random Field Ising Model

Avalanches in Equilibrium and Nonequilibrium In the same Universality Class???

Optimization in random field Ising models by quantum annealing

μsr Studies on Magnetism and Superconductivity

Sub -T g Relaxation in Thin Glass

Slightly off-equilibrium dynamics

Universal Post-quench Dynamics at a Quantum Critical Point

Transcription:

Dynamics of polar nanodomains and critical behavior of the uniaxial relaxor SBN W. Kleemann, Th. Braun, Angewandte Physik, Univ. Duisburg, Germany J. Banys, Physics Department, University of Vilnius, Lithuania Th. Granzow, Institut für Mineralogie, Universität zu Köln, Germany Z. Kutnjak, Jozef Stefan Institute, Ljubljana, Slovenia R. Pankrath, Fachbereich Physik, Universität Osnabrück, Germany Ce Charge disordered congruently melting tungsten bronze SBN61 Sr 0.61-x Ba 0.39 Nb 2 O 6 :(RE,TM) x RE=Ce,La,...; TM=Co,Cr,... 0 x 0.02 Random electric fields W. Kleemann et al., Fund. Phys. Ferroelectr. (Aspen) ed. R.E. Cohen, AIP Conf. Proc. 535 (2000) 26

Features of the 3D Random-Field Ising Model phase transition expected at T c ( robust against RFs ) spatial fluctuations of quenched random fields E i compete with thermal fluctuations of the order parameter modified critical behavior: new critical exponents 3d Ising 3d RFIM α (specific heat) 0.11-0.01 Middleton, Fisher 2001 β (order parameter) 0.31 0.02 Middleton, Fisher 2001 γ (dc susceptibility) 1.31 1.89 Newman, Barkema 1996 ν (correlation length) 0.63 1.07 Middleton, Fisher 2001 enhanced critical slowing-down: activated dynamic scaling τ = τ 0 exp[{t 0 /(T m - T c )} Θν ] instead of τ = τ 0 [(T m -T c )/T c ] -zν Fisher 1986 100 nm PFM image smearing of phase transition & formation of metastable domains Imry, Ma 1975; Villain 1985

Random-field induced polar nanodomains in a 2D model system kt/j=10 <N> = 2 RF distribution kt/j=0.6 <N>= 97 Random-field 4-state Potts model in d = 2 dimensions ( order ( local ( σ, σ ) H = J δ l lm σ l, m= ± Px, ± Py m parameter components) field components) + h γlσl, l 1 σl = σm δ ( σl, σm) = if 0 σl σm hγ l=± Ex, ± Ey kt/j= 1 <N> = 8 kt/j=0.8 <N> 25 kt/j=0.3 <N>=205 +P x -P x +P y -P y kt/j=0.2 <N>=206 H. Qian, L. Bursill, Int. J. Mod. Phys. B 10 (1996) 2027 coarse graining @ fluctuations of RFs

Fingerprint experiments of RFIM behavior of SBN61:Ce cluster formation optical second harmonic precursor @ T>T c linear birefringence precursor critical slowing-down polydispersivelinear linear susceptibility activated dynamic scaling Θν = 1.1 new critical behavior linear susceptibility γ =1.0 1.39 RBIM 1.89 RFIM 97 Nb - NMR β = 0.14 linear birefringence β = 0.12 second harmonic generation (SHG) β = 0.14 pyroelectric current β = 0.14 0.30 specific heat α 0 nanodomains piezoresponse scanning force microscopy (PFM) domain walls repoling, aging and memory effects creep and non-debye relaxation dynamic light scattering.

Dielectric permittivity at elevated frequencies 10 5 T = 320 K 340 K 360 K 380 K 400 K ε ' 10 4 domain walls & ionic conductivity ε" 10 3 10 5 10 4 10 3 two dispersion steps T = 320 K 340 K 360 K 380 K 400 K nanoregions 10 2 ν min 10 1 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 ν [Hz]

Distribution of relaxation times (unpoled SBN) g(τ) 0.8 0.4 Tikhonov ε ( ω) = ε regularization of g( τ ) d lnτ + ε 0 1 + iωτ thermal shift of largest relaxation time τ max (T c +10K) T = 300 K 305 310 315 320 325 330 340 345 350 355 360 365 370 375 380 385 390 0.0 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 τ [s]

Divergence of largest relaxation time 10-2 10-3 10 log(τ/s) -2-4 -6 dynamic scaling of average relaxation time T c = 329.2±0.8 K -8 Θν = 1.08±0.04 τ = τ 0 exp [{T 0 /(T m -T c )} Θν ] τ 0 = 2.4x10-12 s, T 0 = 399.3 K T c = 320.5 K, Θν = 1.13 f 0 =6.6x10 10 Hz activated dynamic scaling 10-4 <τ> [s] 10-5 10-6 10-7 Dec et al., EPL (2001) 0.004 0.01 0.04 T m /T c -1 350 360 370 380 390 T [K]

Order Parameter Criticality measured via NMR 93 Nb (I = 9/2) Spin-Spin relaxation time T 2 P/P 0 1.0 0.5 0.0 1.0 0.5 0.2 10-4 10-2 1-T/T c 200 300 400 Temperature (K) Blinc, Zalar, Lushnikov, WK et al. Phys. Rev. B 64 (2001) 134109 B = 9 T, ν L = 99,92 MHz 90 x - τ - 90 y Echo 1 T 2Q P = (1 P 0 P 2 ) 3 / 2 (1 T / Tc) Experiment (333< T < 349K): β = 0.14±0.03 Theory: β = 0.02±0.01 3-dim. Random-Field Ising Model (Middleton, Fisher 2001) ß

10 2. n ac - n th ac 6 4 2 long-range order n (T c -T) 2β (a) (b) (c) T c - Linear Birefringence of SBN:Ce (revisited) (a) x = 0 β = 0.13 ± 0.01 (b) x = 0.007 β = 0.12 ± 0.01 (c) x = 0.011 β = 0.11 ± 0.01 T c + precursor nanodomains n <δp 2 > 1-tan -1 (ξq m )/(ξq m ) Ornstein-Zernike function Lehnen et al., EPJB (2000) 0 100 200 300 400 500 600 700 Temperature [K]

Hyper Rayleigh scattering (SHG), revisited 1.2 SBN scattering geometry x(zz)x n = a(t c -T) 2β T c =332.22±0.03 Intensity I/I 0 0.8 0.4 I/I 0 1 a=0.443±0.005 β=0.143±0.003 precursor nanodomains I ξ 2-η P. Lehnen (2001) 2β=0.288 0.0 data: Th. Braun (2004) 10-3 10-2 10-1 1-T/T c 300 320 340 Temperature [K]

Pyroelectric response and criticality of polarization polarization P (µc/cm 2 ) 0.4 0.3 0.2 0.1 1.5% poled 100% poled 0.0 290 300 310 320 330 340 350 360 0 temperature T (K) 25 20 15 10 5 2 polarization P (µc/cm ) p Granzow, Woike, WK et al., PRL 72 (2004) 065701 = pyroelectric response P β, where P = P0 (1 T / Tc ) T β(100% poled) = 0.13 RFIM β(1.5% poled) = 0.30 3d-Ising normalized polarization P/P(293 K) 1 0.9 0.8 0.7 0.6 0.5 SBN:Cr 1.13 mol% 100% a.) 16% b.) 1.5% c.) 1E-5 1E-4 1E-3 0.01 0.1 reduced temperature (1 - T/T ) C critical exponent β 0.30 0.25 0.20 0.15 0.10 0 5 10 15 20 25 2 polarization P (20 C) (µc/cm )

Pyroelectric response and criticality of polarization Compensation of random fields by charges on head-tohead and tail-to-tail domains critical exponent β 0.30 0.25 0.20 0.15 0.10 0 5 10 15 20 25 polarization P (20 C) (µc/cm 2 ) Crossover Analogy Dilute uniaxial antiferromagnets in a uniform magnetic field (DAFF Fishman, Aharony 1979) β =0.30±0.02 β = 0.14±0.02 (Fe 0.88 Zn 0.12 F 2 Belanger et al. 2002)

Specific heat anomaly of SBN61 ac calorimetry Z. Kutnjak et al. (submitted) non-ergodicity upon FC and upon ZFH/ZFC

Specific heat anomaly of SBN61 Z. Kutnjak, WK, et al., submitted C p = t -α± + Bt + C T= T/T c -1 Experiment: α ± = - 0.02 Simulations: α = - 0.01 DAFF systems: α 0 Theory: α = -1.0... 0.5

Scaling relations of the critical exponents α = -0.02 ± 0.02 (c p ) β = 0.14 ± 0.02 (NMR, LB, SHG, pyroelectric current) γ = 1.78 ± 0.05 (susceptibility, linear birefringence) Rushbrooke relation α+2β+γ = 2.04±0.05 Critical isotherm: δ =1+γ/β = 13.7 ± 0.05? how to overcome hysteresis? f=4x10-4 Hz T c T. Granzow (PhD Thesis 2003

Conclusion Ce dynamics of polar nanoregions and critical behavior qualify the uniaxial relaxor SBN Sr 0.61-x Ba 0.39 Nb 2 O 6 :(RE,TM) x to belong to the 3D Random Field Ising Model universality class (first ever realized ferroic RFIM!) open questions dynamics in the Terahertz region? (birth of the polar nanoregions @ soft mode frequencies) critical behavior @ T c? (critical exponent δ )