From the multivariable Nyquist plot, if 1/k < or 1/k > 5.36, or 0.19 < k < 2.7, then the closed loop system is stable.

Similar documents
From the multivariable Nyquist plot, if 1/k < or 1/k > 5.36, or 0.19 < k < 2.7, then the closed loop system is stable.

Denis ARZELIER arzelier

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.

Linear Matrix Inequality (LMI)

8 A First Glimpse on Design with LMIs

FEL3210 Multivariable Feedback Control

Robust Control 9 Design Summary & Examples

Theory of Robust Control

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

Robust Multivariable Control

ROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ]

Robust Control 2 Controllability, Observability & Transfer Functions

Robust Control, H, ν and Glover-McFarlane

6.241 Dynamic Systems and Control

Problem Set 5 Solutions 1

Modern Optimal Control

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Problem Set 4 Solution 1

The norms can also be characterized in terms of Riccati inequalities.

The Generalized Nyquist Criterion and Robustness Margins with Applications

Topic # Feedback Control

FEL3210 Multivariable Feedback Control

Lecture 15: H Control Synthesis

Human Friendly Control : an application to Drive by Wire

Stability and Robustness 1

Zeros and zero dynamics

MIMO analysis: loop-at-a-time

CDS Solutions to the Midterm Exam

Riccati Equations and Inequalities in Robust Control

Modern Optimal Control

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Chapter 8 SENSITIVITY ANALYSIS OF INTERVAL SYSTEM BY ROOT LOCUS APPROACH

A Comparative Study on Automatic Flight Control for small UAV

Principles of Optimal Control Spring 2008

Stability of CL System

Stationary trajectories, singular Hamiltonian systems and ill-posed Interconnection

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto

Lecture 7 (Weeks 13-14)

Topic # Feedback Control Systems

EE363 homework 2 solutions

Chapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a

Robustness Analysis and Controller Synthesis with Non-Normalized Coprime Factor Uncertainty Characterisation

Problem Set 8 Solutions 1

Lecture 2. FRTN10 Multivariable Control. Automatic Control LTH, 2018

Robust Multivariable Control

Kalman Decomposition B 2. z = T 1 x, where C = ( C. z + u (7) T 1, and. where B = T, and

3 Stabilization of MIMO Feedback Systems

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Linear Matrix Inequality Approach

Robust Controller Design By Convex Optimization. Alireza Karimi Laboratoire d Automatique, EPFL

Chapter 3. State Feedback - Pole Placement. Motivation

EEE 184: Introduction to feedback systems

Homework Assignment 3

Chapter 5. Standard LTI Feedback Optimization Setup. 5.1 The Canonical Setup

Control System Design

Outline. Classical Control. Lecture 1

Lecture 3. Chapter 4: Elements of Linear System Theory. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University.

Static Output Feedback Stabilisation with H Performance for a Class of Plants

Model Uncertainty and Robust Stability for Multivariable Systems

Exam. 135 minutes, 15 minutes reading time

Chapter Stability Robustness Introduction Last chapter showed how the Nyquist stability criterion provides conditions for the stability robustness of

Robust control of MIMO systems

9 The LQR Problem Revisited

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

CONTROL DESIGN FOR SET POINT TRACKING

Outline. Linear Matrix Inequalities in Control. Outline. System Interconnection. j _jst. ]Bt Bjj. Generalized plant framework

S I X SOLUTIONS TO CASE STUDIES CHALLENGES. Antenna Control: Stability Design via Gain K s s s+76.39K. T(s) =

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

Closed-Loop Structure of Discrete Time H Controller

ME 234, Lyapunov and Riccati Problems. 1. This problem is to recall some facts and formulae you already know. e Aτ BB e A τ dτ

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Entering Matrices

H 2 Optimal State Feedback Control Synthesis. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction

Appendix A Solving Linear Matrix Inequality (LMI) Problems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011

Linear State Feedback Controller Design

Anti-windup synthesis using Riccati equations

Topic # Feedback Control Systems

Analysis of SISO Control Loops

Robust and Optimal Control, Spring 2015

Structured Uncertainty. Block diagonal

rad/sec

An Internal Stability Example

Engraving Machine Example

A Singular Value Decomposition Based Closed Loop Stability Preserving Controller Reduction Method

IMPACT OF PLANT COUPLING ON DECENTRALIZED PI CONTROL LAW. Date: 08/30/2016

Topic # Feedback Control Systems

OQ4867. Let ABC be a triangle and AA 1 BB 1 CC 1 = {M} where A 1 BC, B 1 CA, C 1 AB. Determine all points M for which ana 1...

Robust control for a multi-stage evaporation plant in the presence of uncertainties

EEE582 Homework Problems

9. Two-Degrees-of-Freedom Design

Control Systems. Design of State Feedback Control.

SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

Controllability, Observability, Full State Feedback, Observer Based Control

Transcription:

1. (a) Multivariable Nyquist Plot (diagonal uncertainty case) dash=neg freq solid=pos freq 2.5 2 1.5 1.5 Im -.5-1 -1.5-2 -2.5 1 2 3 4 5 Re From the multivariable Nyquist plot, if 1/k < -.37 or 1/k > 5.36, or.19 < k < 2.7, then the closed loop system is stable. (b)-(i) 6 singular value plot 5 4 3 2 1 1-1 1 1 1 1 2 frequency (rad/sec) max singular value = 5.4379 bound on Delta =.1839 max (k 1, k 2 ) < 1/5.4379 =.184 (b)-(ii) bounds on (kl,k2): ++,+-,-+,-- ++: -2.4284, +-: -.24866, -+: -.93255, --: -.18649

Plots of Hermitian part of diag(k 1 +/-,k 2 +/- ) G(jw). (k 1 >,k 2 >) (k 1 >,k 2 <) minimum eigenvalue of (G(jw)+G T (-jw))/2: k1>,k2> minimum eigenvalue of (G(jw)+G T (-jw))/2: k1>,k2< -.5 -.5 -.1-1 -.15-1.5 -.2-2 -.25-2.5 -.3-3 -.35-3.5 -.4-4 -.45-4.5-1 1 2 1 1 1 1 1-1 1 1 1 1 2 frequency (rad/sec) frequency (rad/sec) (k 1 <,k 2 >) (k 1 <,k 2 <) minimum eigenvalue of (G(jw)+G T (-jw))/2: k1<,k2> minimum eigenvalue of (G(jw)+G T (-jw))/2: k1<,k2< -.2-1 -.4-2 -.6-3 -.8-4 -1-1.2-5 (b)-(iii) -1.4 1-1 1 1 1 1 2 frequency (rad/sec) -6 1-1 1 1 1 1 2 frequency (rad/sec) With k 1 in -.18,.18 and k 2 in -.18,.18, the following set of LMI s P (A+B diag(k 1 +,k 2 + )C) + (A+B diag(k 1 +,k 2 + )C) T P< P (A+B diag(k 1 +,k 2 - )C) + (A+B diag(k 1 +,k 2 - )C) T P< P (A+B diag(k 1 -,k 2 + )C) + (A+B diag(k 1 -,k 2 + )C) T P< P (A+B diag(k 1 -,k 2 - )C) + (A+B diag(k 1 -,k 2 - )C) T P< where (A,B,C,) is a realization of G(s), has a solution. Output of LMI solver: Iteration : Best value of t so far 1 -.1298 Result: best value of t: -.1298 f-radius saturation:. of R = 1.e+1 -.129 *** feasible! *** stability bound: k1: -.18,.18 k2: -.18,.18

(b)-(iv) ********* real mu *********... Mu upper bound (peak value): 5.372e+ Robust stability margin : 1.861e-1 ********* complex mu *********... Mu upper bound (peak value): 5.372e+ Robust stability margin : 1.861e-1 ********* Delta = unstructured (should be 1/H-infty norm of F) *********... Mu upper bound (peak value): 5.465e+ Robust stability margin : 1.83e-1 maximum real mu = 5.3723 maximum real bound for diag(k1,k2) =.18614 maximum complex mu = 5.3723 maximum complex bound for diag(k1,k2) =.18614 maximum bound for unstructured Delta =.18614 maximum spectral radius of F = 5.3723 maximum bound for k when Delta = k I (k complex) =.18614 (b)-(v) Closed loop characteristic polynomial: 2 s + (2 + k1 + 4 k2) s + 4 k2 + k1 + 1-2 k1 k2 Assume -k1max < k1 < k1max, -k2max < k2 < k2max, then the coefficients can be bounded by: 2 - k1max - 4 k2max < (2 + k1 + 4 k2) < 2 + k1max + 4 k2max - 4 k2max - k1max + 1 < 4 k2 + k1 + 1 < 4 k2max + k1max + 1 1-2 k1max k2max < 1-2 k1 k2 < 1 + k1max k2max all Kharitonov polynomials are stable when k1 <.18 k2 <.18 Solution Script (fin1.m) solution of problem 1 (Multivariable Final 22) clear all; close all; open loop plant

G=1 2;3 4*tf(1,1 1); aa,bb,cc,dd=ssdata(ss(g)); multivariable nyquist w=logspace(-4,4,5); sys=ss(aa,bb,cc,dd); sigmah1=mvarnyq(sys,w); diagonal uncertainty case k ; k -1/k<-.88-1/k>.75-13.3<k<11.4 figure(1); plot(real(sigmah1(1,:)),imag(sigmah1(1,:)),'-r',... real(sigmah1(1,:)),-imag(sigmah1(1,:)),'--r',... real(sigmah1(2,:)),imag(sigmah1(2,:)),'-b',... real(sigmah1(2,:)),-imag(sigmah1(2,:)),'--b'); title('multivariable Nyquist Plot (diagonal uncertainty case)',... ' dash=neg freq solid=pos freq') xlabel('re');ylabel('im');grid; axis equal small gain w=logspace(-1,2,2); sys=ss(aa,bb,cc,dd); sv=sigma(sys,w); figure(3);semilogx(w,sv);title('singular value plot'); xlabel('frequency (rad/sec)'); disp('max singular value = ',num2str(max(sv(1,:)))); disp('bound on Delta = ',num2str(1/max(sv(1,:)))); print -f3 -depsc smallgainexample.eps positive real realpartpp=pr(sys,w); figure(4);semilogx(w,realpartpp); title('minimum eigenvalue of (G(jw)+G^T(-jw))/2: k1>,k2>'); xlabel('frequency (rad/sec)'); realpartpn=pr(1 ; -1*sys,w); figure(5);semilogx(w,realpartpn); title('minimum eigenvalue of (G(jw)+G^T(-jw))/2: k1>,k2<'); xlabel('frequency (rad/sec)'); realpartnp=pr(-1 ; 1*sys,w); figure(6);semilogx(w,realpartnp); title('minimum eigenvalue of (G(jw)+G^T(-jw))/2: k1<,k2>'); xlabel('frequency (rad/sec)'); realpartnn=pr(-1 ; -1*sys,w); figure(7);semilogx(w,realpartnn); title('minimum eigenvalue of (G(jw)+G^T(-jw))/2: k1<,k2<'); xlabel('frequency (rad/sec)');

print -f4 -depsc prexample1.eps print -f5 -depsc prexample2.eps print -f6 -depsc prexample3.eps print -f7 -depsc prexample4.eps bpp=min(realpartpp); bpn=min(realpartpn); bnp=min(realpartnp); bnn=min(realpartnn); disp('bounds on (kl,k2): ++,+-,-+,--'); disp(sprintf('++:.5g, +-:.5g, -+:.5g, --:.5g\n',... 1/bpp,1/bpn,1/bnp,1/bnn)); LMI n=size(aa,1); L1=1 ; ; L2= ; 1; a1=-bb*l1*cc; a2=-bb*l2*cc; define lmi variable to be solved setlmis(); P,ndec,Pdec=lmivar(1,n 1); set up uncertain variable range k1=-1,1*.18 range of k1 k2=-1,1*.18; range of k2 k1a=k1(1);k1b=k1(2); k2a=k2(1);k2b=k2(2); set up LMI to be solved left hand side of first lmi: m1 1,1th block of the lmi: l1,l2 first argument = m1,l1,l2,p second/third a,b 's' to specify a*p*b+b'*p*a' lmiterm(1,1,1,p,(aa+k1a*a1+k2a*a2)',1,'s'); left hand side of second lmi: m1 1,1th block of the lmi: l1,l2 a*p*b first argument = m1,l1,l2,p second/third a,b lmiterm(2,1,1,p,(aa+k1b*a1+k2a*a2)',1,'s'); left hand side of third lmi: m1 1,1th block of the lmi: l1,l2 a*p*b

first argument = m1,l1,l2,p second/third a,b lmiterm(3,1,1,p,(aa+k1a*a1+k2b*a2)',1,'s'); left hand side of fourth lmi: m1 1,1th block of the lmi: l1,l2 a*p*b first argument = m1,l1,l2,p second/third a,b lmiterm(4,1,1,p,(aa+k1b*a1+k2b*a2)',1,'s'); example=getlmis; options=,1,-1,-1,; tmin,pfeas=feasp(example,options); disp(tmin) if tmin<; disp('*** feasible! ***'); disp('stability bound: '); disp('k1: ',num2str(k1a),',',num2str(k1b)); disp('k2: ',num2str(k2a),',',num2str(k2b)); else disp('*** no feasible solution (reduce uncertainty bound)! ***'); end mu sys1=ltisys(aa,bb,cc,dd,1); delta1=ublock(1,1,'ltisr'); delta2=ublock(1,1,'ltisr'); deltar=udiag(delta1,delta2); disp('********* real mu ********* '); marginr,peakf,fs,ds,gs = mustab(sys1,deltar); delta1=ublock(1,1,'ltisc'); delta2=ublock(1,1,'ltisc'); deltac=udiag(delta1,delta2); disp('********* complex mu ********* '); marginc,peakf,fs,ds,gs = mustab(sys1,deltac); deltaf=ublock(2,1,'ltifc'); disp('********* Delta = unstructured ',... '(should be 1/H-infty norm of F) ********* '); marginf,peakf,fs,ds,gs = mustab(sys1,deltaf); should be same as H- inf disp('maximum real mu = ',num2str(1/marginr)); disp('maximum real bound for diag(k1,k2) = ',num2str(marginr)); disp('maximum complex mu = ',num2str(1/marginc)); disp('maximum complex bound for diag(k1,k2) = ',num2str(marginc)); disp('maximum bound for unstructured Delta = ',num2str(marginc)); spectral radius rho_c=(max(abs(sigmah1))); disp('maximum spectral radius of F = ',... num2str(max(rho_c))); disp('maximum bound for k when Delta = k I (k complex) = ',... num2str(1/max(rho_c)));

Kharitonov syms s k1 k2 k1mx=.18;k2mx=.18; kk=k1 ; k2; charpoly=collect(simplify(det(s*eye(n,n)-(aa-bb*kk*cc))),s); pretty(charpoly); a1u=2+k1mx+4*k2mx; a1l=2-k1mx-4*k2mx; au=4*k2mx + k1mx + 1 + 2 *k1mx *k2mx; al=-4*k2mx - k1mx + 1-2 *k1mx *k2mx; poly1=1 a1l au; poly2=1 a1u al; poly3=1 a1l al; poly4=1 a1u au; r1=max(real(roots(poly1))); r2=max(real(roots(poly2))); r3=max(real(roots(poly3))); r4=max(real(roots(poly4))); if r1<&r2<&r3<&r4< disp('all Kharitonov polynomials are stable'); disp(' k1 <',num2str(k1mx),' ',' k2 <',num2str(k2mx)); else disp('not all Kharitonov polynomials are stable, reduce bounds!'); end

Problem 2. Given the state space representation of the plant Parameterize an n K -th order controller as ẋ = Ax + Bu y = Cx. ẋ K = A K x K + B K y = A K x K + B K Cx u = C K x K + D K y = C K x K + D K Cx. Substituting back into the plant state equation we have ẋ =(A + BD K C)x + BC K x K. Putting x and x K together, the closed loop system is described by ẋ A + BDK C BC = K x ẋ K B K C A K x K = A B AK B + K I x I C K D K C }{{}}{{}}{{}}{{} J A The closed loop system is stable if and only if there exists X cl > such that B C x K. X cl (A + BJC)+(A + BJC) T X cl <. (1) Define H = X cl A + A T X cl Q = B T X cl P = C. Then (1) becomes H + Q T JP + P T J T Q. (2) Note that with loss of generality we can assume B and C full rank, then Q and P are also full rank. Now apply Lemma 7.2, then we have (2) equivalent to N T QHN Q <, N T P HN P < (3) where R(N Q )=N (Q) and R(N P )=N (P ). In our case, N Q = X 1 cl N T c N P = No where R(N o )=N (C) and R(N T c )=N (B T ). 1

Let and write X X2 X cl = X2 T X 3 X 1 cl = Y Y2 Y2 T Y 3 By Lemma 7.9, X cl > if and only if X I X I and rank I Y I Y lasubsituting (4) (5) into (3) and simplify, we obtain Together with (6), this proves Theorem 5.8. No T (A T X + XA)N o < N c (AY + YA T )N c <. (4). (5) n + n K. (6) 2

(a) Let the input of G be denoted z and output w. Then from the block diagram we have z = K(Gz + w) = (I + KG) 1 Kw = K(I + GK) 1 w. Given a general interconnection between a system P (with input (w, u) and output (z,y)) and K (feedback from y to u), the closed loop transfer function is T zw = P 11 P 12 K(I + P 22 K) 1 P 21. Matching terms, it s clear that P 11 =, P 12 = I, P 21 = I, P 22 = G,or I P =. I G From the robust stability theorem, the closed loop system is stable for all G ν if and only if T zw H < 1/ν. (b) The condition T zw H < 1/ν is equivalent to T νz,w H < 1. A state space realization for T νz,w is ẋ = Ax + w + Bu = Ax + w +(B/ν)νu νz = x + w + I νu y = Cx + I w + νu. The H optimization requires the solution of X and Y.ForX, we have the Riccati Equation: A T X + X A + C T 1 C 1 + X (B 1 B T 1 B 2 B T 2 )X =. Since B 1 =, C 1 =, B 2 = B/ν,wehave Similarly, for Y (note that C 2 = C): A T X + X A ν 2 X BB T X =. = AY + Y A T + B1 T B 1 + Y (C1 T C 1 C2 T C 2 )Y = AY + Y A T Y C T CY. Let W c be the controllability grammian of ( A +,B + ) and W o be the observability grammian of (C +, A + ): W c ( A + ) T +( A + )W c + B+B T + = W o ( A + )+( A + ) T W o + C + C+ T =. Then it follows that X and Y given below satisfy the Riccati equations: W 1 c ν X = 2 W 1 o, Y =. 1

The condition ρ(x Y ) < 1 (ρ is the spectral radius) is equivalent to ρ(wc 1 This is further equivalent to ρ(w c W o ) >ν 2, which is the stated condition. The H optimal controller is of the form: ˆx = (A B 2 B T 2 X L C)ˆx + L y = (A B + B T +W 1 c L C)ˆx + L y L = (I Y X ) 1 Y C T =(I W 1 o Wc 1 ) 1 Wo 1 C+ T νu = B2 T X ˆx = BT + ν W c 1 ν 2ˆx = B+W T c 1 νˆx. The actual control signal is then u = B+W T c 1 ˆx. (c) Given g(s) =1/(s 1) 2. Choose, for example, the realization 1 1 A =, B =, C = 1, D =. 1 1 Then W c =.25.25.25.5, W o =.5.25.25.25. W 1 o )) < 1/nu 2. The supremum of ν is.136. For the controller design, choose something slightly smaller, e.g., at 95 value, ν =.984. The H controller is then s.423 K(s) = 337.16 (s +32.86)(s +4.76). The closed loop K(I + GK) 1 H is 1.2 which is 1/ν. The closed loop poles are ( 33.2, 1, 1,.42). MATLAB Code fin3c.m: solution of problem 3(c) (Multivariable Final 22) A=1 1; 1;B=;1;C=1 ;D=; sys=ss(-a,b,c,d); Wc=gram(sys, c ); Wo=gram(sys, o ); numax=sqrt(min(abs(eig(wc*wo)))); nu=.95*numax; disp(sprintf( numax = 5.3g,numax)); disp(sprintf( Choose nu = 5.3g,nu)); disp(sprintf( Theoretical achivable H-infinity norm = 1/nu = 5.3g,1/nu)); B2=B/nu; 2

Xinf=inv(Wc)*nuˆ2; Yinf=inv(Wo); Linf=inv(eye(2,2)-Yinf*Xinf)*Yinf*C ; AK=A-B2*B2 *Xinf-Linf*C; BK=Linf; CK=B2 *Xinf; DK=; K=ss(AK,BK,CK,DK)/nu; G=ss(A,B,C,D); Gcl=feedback(-K,G,1); a,b,c,d=ssdata(gcl); sysgcl=pck(a,b,c,d); out=hinfnorm(sysgcl); disp(sprintf( closed loop H-infinity norm in 5.3g,5.3g,... out(1),out(2))); disp(sprintf( tolerable additive uncertainty bound: 4.3g,4.3g,... 1/out(1),1/out(2))); figure(1);bode(gcl) disp( closed loop poles: ); disp(pole(gcl)); 3

(a) Let k(s) be stabilizing and k = y/x a stable coprime factorization such that xm yn =1. If k(s) is stable, then x(s) cannot have zeros in the open right half plane. Since x(s) varies continuously in s, x(z 1 ) and x(z 2 ) must have the same sign for any real and non-negative z 1 and z 2 (this is necessary but not sufficient). Let z 1 and z 2 be two consecutive open RHP zeros of g(s) (i.e., n(z 1 )=n(z 2 )=). Then from Bezout Identity, we have x(z 1 )m(z 1 )=x(z 2 )m(z 2 ). Since x(z 1 ) and x(z 2 ) have the same signs, m(z 1 ) and m(z 2 ) must also have the same signs. Each real pole of g(s) (i.e., zeros of m(s)) between z 1 and z 2 will cause a sign change in m(s) as s varies from z 1 to z 2. Therefore, there must be an even number of poles between z 1 and z 2 in order for m(z 1 ) and m(z 2 ) to have the same signs. (b) Consider g(s) =s/(s 2 1). Between the zeros at and +, there is one real pole, therefore, g does not satisfy PIP. Let n = s/(s +2) 2, m =(s 2 1)/(s +2) 2. Use the nominal controller k(s) = (s +4)/(s.5), then we can choose y = (s +4)/(s +2)and x =(s.5)/(s +2). Now calculate We can set δ(s) =m(s)x(s) n(s)y(s) = 1 2s 3 + s 2 +6s +1. 2 (s +2) 3 2(s +4)(s +2)2 y 1 = y/δ = 2s 3 + s 2 +6s +1 (2s 1)(s +2)2 x 1 = x/δ = 2s 3 + s 2 +6s +1 then (y 1,x 1 ) would satisfy the Bezout Identity. The complete parameterization of stabilizing controllers is given by k = y 1 mq x 1 nq where q is any RH function. The stability of k is determined by the zeros of d k = x 1 nq. Evaluate d k at and, we get d k () = 4 and d k ( ) =1. Since they are of different signs, d k (s) must cross zero for some positive and real s. 1