Habilitation Thesis DIFFEOMORPHISM GROUPS AND GEOMETRIC MECHANICS CORNELIA VIZMAN

Similar documents
Cocycles and stream functions in quasigeostrophic motion

arxiv: v1 [math.dg] 20 Oct 2015

Contents. Preface...VII. Introduction... 1

arxiv: v1 [math-ph] 13 Feb 2008

Groups and topology in the Euler hydrodynamics and KdV

1. Vacuum Charge and the Eta-Function, Comm. Math. Phys. 93, p (1984)

The Averaged Fluid and EPDiff Equations: (A Deja Vu Lecture) Jerrold E. Marsden

Acceleration bundles on Banach and Fréchet manifolds

Dual pairs for matrix groups

L 2 Geometry of the Symplectomorphism Group

Tobias Holck Colding: Publications. 1. T.H. Colding and W.P. Minicozzi II, Dynamics of closed singularities, preprint.

On the bi-hamiltonian structures of the Camassa-Holm and Harry Dym equations

LIST OF PUBLICATIONS. Mu-Tao Wang. March 2017

Tobias Holck Colding: Publications

Publications. Graeme Segal All Souls College, Oxford

arxiv:hep-th/ v1 9 Jun 1994

Patrick Iglesias-Zemmour

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 33, Number 1, January 1996

A 2-COCYCLE ON A GROUP OF SYMPLECTOMORPHISMS

A Convexity Theorem For Isoparametric Submanifolds

LECTURE 1: LINEAR SYMPLECTIC GEOMETRY

Geometric structures and Pfaffian groupoids Geometry and Algebra of PDEs - Universitetet i Tromsø

Dirac Structures on Banach Lie Algebroids

arxiv:math/ v2 [math.ap] 18 Feb 2005

Dynamics of symplectic fluids and point vortices

ISOMORPHISMS OF POISSON AND JACOBI BRACKETS

Lecture on Equivariant Cohomology

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

VISCOUS HYDRODYNAMICS THROUGH STOCHASTIC PERTURBATIONS OF FLOWS OF PERFECT FLUIDS ON GROUPS OF DIFFEOMORPHISMS *

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria

Notes on D 4 May 7, 2009

Modern Geometric Structures and Fields

A Survey of Singular Reduction

EULER-ARNOLD EQUATIONS AND TEICHMÜLLER THEORY

Lectures on the Orbit Method

Quantizations and classical non-commutative non-associative algebras

EXERCISES IN POISSON GEOMETRY

arxiv:nlin/ v1 [nlin.si] 25 Sep 2006

CYCLIC HOMOLOGY AND THE BEILINSON-MANIN-SCHECHTMAN CENTRAL EXTENSION. Ezra Getzler Harvard University, Cambridge MA 02138

Известия НАН Армении. Математика, том 46, н. 1, 2011, стр HOMOGENEOUS GEODESICS AND THE CRITICAL POINTS OF THE RESTRICTED FINSLER FUNCTION

THE MODULAR CLASS OF A LIE ALGEBROID COMORPHISM

TWO BOUNDARY ELEMENT APPROACHES FOR THE COMPRESSIBLE FLUID FLOW AROUND A NON-LIFTING BODY

POISSON-LIE T-DUALITY AND INTEGRABLE SYSTEMS

CANONICAL METRICS AND STABILITY OF PROJECTIVE VARIETIES

Maslov indices and monodromy

The symplectic structure on moduli space (in memory of Andreas Floer)

GEOMETRIC QUANTIZATION

Applications of Nambu Mechanics to Systems of Hydrodynamical Type II

Poisson CIRM, juin Organisateurs : Jean-Paul Dufour et Yvette Kosmann-Schwarzbach

Non-isomorphic contact structures on the torus T 3

Hamiltonian aspects of fluid dynamics

Quantising noncompact Spin c -manifolds

Differential geometry applied to acoustics: non linear propagation in Reissner beams

M3-4-5 A16 Notes for Geometric Mechanics: Oct Nov 2011

Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups

Geometric structures and Pfaffian groupoids Pure and Applied Differential Geometry - Katholieke Universiteit Leuven

Geometric structures and Pfaffian groupoids Pure and Applied Differential Geometry - Katholieke Universiteit Leuven

FLABBY STRICT DEFORMATION QUANTIZATIONS AND K-GROUPS

A Note on Poisson Symmetric Spaces

J-holomorphic curves in symplectic geometry

Integrable evolution equations on spaces of tensor densities

EULER-ARNOLD EQUATIONS AND TEICHMÜLLER THEORY

arxiv:hep-th/ v4 22 Aug 97

Moment Maps and Toric Special Holonomy

RIEMANNIAN MANIFOLDS WITH INTEGRABLE GEODESIC FLOWS

BRST and Dirac Cohomology

Complexes of Hilbert C -modules

Solutions to the Hamilton-Jacobi equation as Lagrangian submanifolds

Action-angle coordinates and geometric quantization. Eva Miranda. Barcelona (EPSEB,UPC) STS Integrable Systems

Hamilton-Jacobi theory on Lie algebroids: Applications to nonholonomic mechanics. Manuel de León Institute of Mathematical Sciences CSIC, Spain

EXPLICIT QUANTIZATION OF THE KEPLER MANIFOLD

arxiv: v1 [math.dg] 16 Sep 2008

7+(),(/'6,167,787( ABSTRACTS 1.2 )255(6($5&+,10$7+(0$7,&$/6&,(1&(6

Citation Osaka Journal of Mathematics. 43(1)

DERIVED HAMILTONIAN REDUCTION

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

CLASSIFICATION OF NON-ABELIAN CHERN-SIMONS VORTICES

η = (e 1 (e 2 φ)) # = e 3

Sheaves of Lie Algebras of Vector Fields

Burgers equation 324. Calugareanu formula 189. Calabi invariant 261, 265. integral, 265. form, 265. Casimir-momentum method 101. cat map 111, 281, 305

Citation Osaka Journal of Mathematics. 49(3)

On the geometric Langlands duality

Euler-Poincaré reduction in principal bundles by a subgroup of the structure group

Integrability and Associativity

Topics in Representation Theory: Cultural Background

Contact manifolds and generalized complex structures

THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS

CURVATURES OF SOBOLEV METRICS ON DIFFEOMORPHISM GROUPS

ON THE COHOMOLOGY OF CLASSIFYING SPACES OF GROUPS OF HOMEOMORPHISMS

A REMARK ON SIMPLICITY OF VERTEX ALGEBRAS AND LIE CONFORMAL ALGEBRAS

GAUGE THEORY OF GRAVITATION ON A SPACE-TIME WITH TORSION

arxiv:math/ v1 [math.dg] 29 Sep 1998

arxiv: v3 [math.dg] 7 Sep 2012

GEODESIC ORBIT METRICS ON COMPACT SIMPLE LIE GROUPS ARISING FROM FLAG MANIFOLDS

Nonlinear MHD Stability and Dynamical Accessibility

Publication. * are expository articles.

SYMPLECTIC GEOMETRY: LECTURE 5

Minimal surfaces in quaternionic symmetric spaces

BACKGROUND IN SYMPLECTIC GEOMETRY

Linear weakly Noetherian constants of motion are horizontal gauge momenta

Transcription:

Habilitation Thesis DIFFEOMORPHISM GROUPS AND GEOMETRIC MECHANICS CORNELIA VIZMAN

Chapter 1 Summary 1.1 Rezumat Numitorul comun al activităţilor mele de cercetare este geometria diferenţială infinit dimensională, fie ca obiect de studiu, fie ca instrument de lucru. Obiecte matematice infinit dimensionale importante şi des întâlnite sunt grupurile de difeomorfisme. M-am ocupat de acestea începând cu teza de doctorat despre orbite coadjuncte ale unor grupuri infinit dimensionale, în special grupuri de difeomorfisme, dar mai târziu grupurile de difeomorfisme şi algebrele Lie de câmpuri de vectori m-au adus tot mai aproape de mecanica geometrică, în special dinamica fluidelor. Odată cu articolul fondator al lui Arnold [5], formalizat apoi de Ebin şi Marsden [13], studiul ecuaţiilor lui Euler pentru fluidul ideal a fost transferat către studiul geodezicelor unei metrici Riemanniene drept invariante pe grupul difeomorfismelor ce păstrează volumul. Aceasta a fost prima cărămidă a hidrodinamicii geometrice (programul lui Arnold). Numeroase alte sisteme de tip hidrodinamic se pot scrie ca ecuaţii geodezice (sau, mai general, ca ecuaţii Euler-Poincaré) pe grupuri de difeomorfisme sau pe extensii ale acestora, astfel putând fi folosite metode geometrice pentru studiul lor. În consecinţă rezultatele mele obţinute după susţinerea doctoratului se pot încadra în două mari direcţii: 1. Grupuri infinit dimensionale, extensii şi orbite coadjuncte: [2], [22], [61], [62], [74], [76], [77], [78], [80], [84], [85]; 2. Hidrodinamică geometrică, ecuaţii Euler-Poincaré şi geometria lor: [17], [18], [19], [20], [26], [72], [75], [81], [82], [83], [86], [87], [88], [89], [90]. 1. Grupuri infinit dimensionale, extensii şi orbite coadjuncte. Un rezultat cu aplicaţii surprinzătoare în teoria cuantică a gravitaţiei se referă la Grassmannienii neliniari, care sunt spaţii de subvarietăţi, eventual cu anumite proprietăţi suplimentare, ale unei varietăţi diferenţiabile fixate. Împreună cu 7

8 Haller am arătat în [22] că Grassmannienii neliniari de subvarietăţi de codimensiune doi sunt orbite coadjuncte ale extensiilor centrale ale grupului difeomorfismelor ce păstrează volumul. Şi printre orbitele coadjuncte ale grupului difeomorfismelor Hamiltoniene regăsim Grassmannieni neliniari, anume Grassmannienii neliniari de subvarietăţi simplectice. Binecunoscuta extensie centrală de precuantificare, datorată lui Kostant [42] şi Souriau [71], constă în grupul cuantomorfismelor ca extensie centrală a grupului difeomorfismelor Hamiltoniene ale unei varietăţi simplectice precuantizabile. Un rezultat obţinut împreună cu Neeb [61] generalizează această extensie centrală pentru cazul unei varietăţi infinit dimensionale. Recent am descoperit o versiune mai generală a extensiei centrale de precuantificare, anume o extensie abeliană asociată unei 2-forme diferenţiale închise cu valori vectoriale [76]. Toate aceste extensii de precuantificare pot fi folosite pentru construcţia unor extensii de grupuri Lie infinit dimensionale prin procedeul de pull-back. Alt mod de construcţie, folosind grupul drumurilor, l-am prezentat în lucrarea [80]. Alte rezultate care se referă la extensii de grupuri Lie au un mai pronunţat caracter algebric. În articolul [2] am studiat împreună cu Alekseev şi Severa extensii ale algebrelor Lie de curenţi ce se pot obţine cu ajutorul a doi functori definiţi în [1], în special simetriile modelului sigma. Aceşti functori asociază o algebră Lie unei perechi ce constă dintr-o varietate diferenţiabilă şi o algebră Lie diferenţială graduată. În alt articol [62], scris în colaborare cu Neeb, am propus o interpretare abstractă pentru acţiunea Hamiltoniană a unui grup şi extensiile centrale de grupuri Lie asociate în cazul general când forma simplectică se înlocuieşte cu un 2-cociclu de algebră Lie. În ultimul meu articol [74] m-am ocupat cu grupul k-jeturilor J k G al unui grup Lie G: descriind explicit operaţia de grup în trivializarea la dreapta, am determinat cociclul de grup pentru grupul J k G descris ca extensie abeliană a grupului J k 1 G. 2. Hidrodinamică geometrică, ecuaţii Euler-Poincaré şi geometria lor. Unul dintre cele mai bune rezultate ale mele a fost obţinut împreună cu Gay-Balmaz [19] şi se referă la perechea duală pentru ecuaţia lui Euler: am lămurit complet problema perechii duale de aplicaţii moment asociate, în spiritul articolului lui Marsden şi Weinstein [51] unde această pereche duală a apărut în contextul variabilelor Clebsch. A fost necesară introducerea extensiilor centrale ale unor grupuri de difeomorfisme (ce păstrează forma simplectică, respectiv forma volum) şi demonstrarea tranzitivităţii acţiuni acestor grupuri pe varietatea Fréchet a scufundărilor. Pentru manipularea formelor diferenţiale pe spaţiile de funcţii folosite aici, ne-am folosit de aşa numitul hat calculus, construit în acest scop în [75]. Acelaşi program l-am dus la bun sfârşit şi pentru ecuaţia Euler-Poincaré pe grupul difeomorfismelor (ecuaţia EPDiff) ce generalizează ecuaţia Camassa-Holm n-dimensională. Perechea duală EPDiff a fost introdusă de către Holm şi Marsden în [24], piciorul stâng fiind răspunzător pentru soluţii singulare, iar cel drept pentru constante de

9 mişcare. Perechile duale pentru ecuaţii Euler-Poincaré pe grupuri de automorfisme ale unui fibrat principal (ecuaţiile EPAut şi EPAut incompresibilă) le-am determinat împreună cu Gay-Balmaz şi Tronci în [17]. A fost necesară definirea unui nou grup de difeomorfisme, grupul cromomorfismelor, ce integrează o extensie centrală a algebrei Lie de câmpuri vectoriale Hamiltoniene ce admit funcţii Hamiltoniene invariante. Tranzitivitatea acţiunilor grupurilor de difeomorfisme implicate am demonstrat-o deocamdată în cazul unui fibrat principal trivial în articolul [18]. O familie de perechi duale asociate cu fenomenul de rezonanţă e prezentată într-un articol scris în colaborare cu Holm [26]. Sunt exemple de perechi duale asociate unor sisteme Hamiltoniene superintegrabile. Cuantificarea fluxului magnetic poate fi privită ca o condiţie de integrabilitate pentru extensia centrală Lichnerowicz a algebrei Lie a câmpurilor de vectori având divergenţa zero, am arătat în articolul [89]. În acest caz atât ecuaţiile de mişcare ale fluidului ideal încărcat electric, cât şi ecuaţia de superconductivitate, ambele într-un câmp magnetic dat, sunt ecuaţii geodezice pe grupul automorfismelor unui fibrat principal ce păstrează volumul, dotat cu metrică Riemanniană drept invariantă. Articolul[20] se ocupă cu subgrupuri total geodezice ale unui grup Lie dotat cu metrică Riemanniană drept invariantă. Pentru metrica L 2 drept invariantă am determinat toate varietăţile Riemanniene ce au proprietatea că subgrupul difeomorfismelor exacte ce invariază forma volum este total geodezic în grupul difeomorfismelor ce păstrează forma volum. Acestea sunt produsele răsucite dintre un tor plat şi o varietate simplu conexă. Astfel că am putut răspunde la întrebarea: în ce condiţii fluidul ideal păstrează proprietatea de a admite un potenţial. În colaborare cu Tığlay am studiat în [72] atât ecuaţii Euler-Poincaré generalizate, cât şi ecuaţii Euler-Poincaré pe spaţii omogene. Cu ecuaţii geodezice pe grupuri de difeomorfisme dotate cu metrici Riemanniene drept invariante ce au relevanţă în fizică şi geometria lor m-am ocupat şi în articolele [81], [82], [86], [87], [88] şi [90]. De asemenea am scris un articol tip survey [83] şi o monografie ştiinţifică [79] pe această temă. 1.2 Résumé The common denominator of my research is differential geometry in infinite dimensions, either as object of study, or as instrument of work. Important and widely spread infinite dimensional objects are diffeomorphism groups. I worked on them starting with my doctoral thesis on coadjoint orbits of infinite dimensional Lie groups, especially diffeomorphism groups, but later diffeomorphism groups and their Lie algebras of vector fields brought me closer to geometric mechanics, especially fluid dynamics.

10 Through the founding article of Arnold [5], later formalized by Ebin and Marsden [13], the study of Euler s equations for ideal fluids has been transfered to the study of geodesics on the group of volume preserving diffeomorphisms with right invariant Riemannian metric. This was the first brick of geometric hydrodynamic (Arnold s program). Many other systems of hydrodynamical type can be written as geodesic equations (or, more generally, as Euler-Poincaré equations) on diffeomorphism groups or on extensions of diffeomorphisms groups, thus making possible the use of geometric methods for their study. The results obtained after my PhD could be split in two big directions: 1. Infinite dimensional groups, extensions and coadjoint orbits: [2], [22], [61], [62], [74], [76], [77], [78], [80], [84], [85]; 2. Geometric hydrodynamics, Euler-Poincaré equations and their geometry: [17], [18], [19], [20], [26], [72], [75], [81], [82], [83], [86], [87], [88], [89], [90]. 1. Infinite dimensional groups, extensions and coadjoint orbits. A result with surprising applications in quantum gravity refers to nonlinear Grassmannians: spaces of submanifolds of a given differential manifold, sometimes with additional properties. In [22], together with Haller, we showed that the nonlinear Grassmannians of submanifolds of codimension two are coadjoint orbits of central extensions of the group of volume preserving diffeomorphisms. Also among the coadjoint orbits of the group of Hamiltonian diffeomorphisms one finds nonlinear Grassmannians, namely the nonlinear Grassmannians of symplectic submanifolds. The well known prequantization central extension, due to Kostant [42] şi Souriau [71], expresses the group of quantomorphisms as a central extension of the group of Hamiltonian diffeomorphisms of a prequantizable symplectic manifold. A result obtained together with Neeb [61] generalizes this central extension to the case of an infinite dimensional manifold. Recently a more general version of the prequantization central extension came up, namely an abelian extension associated to a closed vector valued differential 2-form [76]. All these prequantization extensions can be used to build extensions of infinite dimensional Lie groups by pull-back. Another method, that uses the path group of the infinite dimensional Lie group, is presented in [80]. Other results that refer to Lie group extensions have a more algebraic flavor. In [2], together with Alekseev and Severa, we studied extensions of current Lie algebras obtained using two functors introduced in [1], called current algebra functors. They associate a Lie algebra to a pair consisting of a differential manifold and a differential graded Lie algebra. One of the extensions we obtain is related to the sigma model symmetries. In collaboration with Neeb [62] we propose an abstract interpretation for Hamiltonian group

11 actions and associated central Lie group extensions in the general case when the symplectic form is replaced by a Lie algebra 2-cocycle. My last paper [74] deals with the group J k G of k-jets of a Lie group G: it describes explicitly the group multiplication in the right trivialization and determines the group 2-cocycle for J k G as an abelian extension of J k 1 G. 2. Geometric hydrodynamics, Euler-Poincaré equations and their geometry. One of my best results, obtained together with Gay-Balmaz [19], deals with the dual pair associated to Euler s equation. We completely solved the problem of the dual pair of momentum maps in the spirit of the paper [51] due to Marsden and Weinstein, where it first appeared in the context of Clebsch variables. It required to use central extensions of groups of diffeomorphisms (those preserving the symplectic resp. the volume form) and to prove the transitivity of their actions on the Fréchet manifold of embeddings. To manipulate differential forms on space of functions, we introduced the so called hat calculus [75]. The same program was completed also for the Euler- Poincaré equation on the diffeomorphism group (EPDiff) that generalizes the n-dimensional Camassa-Holm equation. The EPDiff dual pair was introduced by Holm and Marsden in [24]: the left leg is responsible for singular solutions, while the right leg provides constants of motion. Dual pairs for Euler-Poincaré equations on the automorphism groups of a principal bundle (EPAut and incompressible EPAut) were determined together with Gay-Balmaz and Tronci in [17]. We needed to introduce a new diffeomorphism group, the chromomorphism group, that integrates a central extension of the Lie algebra of Hamiltonian vector fields that admit invariant Hamiltonian functions. The transitivity of the actions of the corresponding diffeomorphism groups was proved for the moment in the special case of trivial principal bundles [18]. A family of dual pairs associated with resonances is described in a joint paper with Holm [26]. These are examples of dual pairs related to superintegrable Hamiltonian systems. That quantification of magnetic flux can be seen as an integrability condition for the Lichnerowicz central extension of the Lie algebra of divergence free vector fields is shown in [89]. In this case both the charged ideal fluid motion and the superconductivity equation in a fixed magnetic field can be expressed as geodesic equations on the group of volume preserving automorphisms of a principal bundle, endowed with right invariant Riemannian metric. In the article [20] we consider totally geodesic subgroups of a Lie group endowed with right invariant Riemannian metric. For the L 2 metric we determine all Riemannian manifolds that satisfy the following property: the subgroup of exact volume preserving diffeomorphisms is totally geodesic in the group of volume preserving diffeomorphisms. These are twisted products of flat tori with simply connected manifolds. Thus we answered the question: when does the ideal fluid flow preserve the property of possessing a potential.

12 In a joint work with Tığlay [72] we study generalized Euler-Poincaré equations, as well as Euler-Poincaré equations on homogeneous spaces. Several geodesic equations on diffeomorphism groups endowed with right invariant Riemannian metrics with physical relevance and some of their geometric properties can be found in [81], [82], [86], [87], [88] and [90]. I have also written a survey article [83] and a scientific monograph [79] on this subject.

Bibliography [1] A. Alekseev, P. Severa, Equivariant cohomology and current algebras, Confluentes Math., 4 (2012). [2] Alekseev, A., Severa, P., and Vizman, C., Current algebra functors and extensions, Reviews in Mathematical Physics, 25 (2013). [3] Alekseev, A. and S. Shatashvili, Path integral quantization of the Virasoro group and 2-d gravity, Nucl. Phys. B., 323 (1989) 719 733. [4] A. Alekseev and T. Strobl, Current algebras and differential geometry, JHEP, 03 (2005) [5] Arnold, V.I., Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16 (1966) 319 361. [6] Arnold, V.I., Khesin, B.A., Topological Methods in Hydrodynamics, Springer, Berlin, 1998. [7] Balleier, C. and T. Wurzbacher, On the geometry and quantization of symplectic Howe pairs, Math. Z., 271 (2012) 577-591. [8] Banyaga, A., Sur la structure du groupe de difféomorphismes qui préservent une forme symplectique, Comment. Math. Helvetici, 53 (1978) 174 227. [9] A. Bloch, P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu, The Euler-Poincare equations and double bracket dissipation, Comm. Math. Phys., 175 (1996) 1 42. [10] Burgers, J., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1 (1948) 171 199. [11] Camassa, R., Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993) 1661 1664. [12] R. Cushman and D. L. Rod, Reduction of the semisimple 1:1 resonance, Physica D, 6 (1982) 105 112. 81

82 References [13] Ebin, D., Marsden, J., Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970) 102 163. [14] Gay-Balmaz, F., Holm, D. D., Meier, D. M., Raţiu, T., Vialard, F.-X., Invariant Higher-Order Variational Problems, Comm. Math. Phys., 309 (2012) 413 458. [15] Gay-Balmaz, F., Holm, D. D., Meier, D. M., Raţiu, T., Vialard, F.- X., Invariant Higher-Order Variational Problems II, J. Nonlin. Sci., 22 (2012) 187 212. [16] Gay-Balmaz, F., J. E. Marsden, and T. S. Ratiu, Reduced variational formulations in free boundary continuum mechanics, J. Nonlin. Sci., 22 (2012) 463 497. [17] Gay-Balmaz, F., C. Tronci, and C. Vizman, Geometric dynamics on the automorphism group of principal bundles: geodesic flows, dual pairs and chromomorphism groups, J. Geom. Mech. 5 (2013) 39 84. [18] Gay-Balmaz, F., Vizman, C., Dual pairs for non-abelian fluids, Geometric Mechanics: The Legacy of Jerry Marsden, Fields Institute Communications Series, 2013. [19] Gay-Balmaz, F., Vizman, C., Dual pairs in fluid dynamics, Ann. of Global Analysis and Geometry, 41 (2012) 1 24. [20] Haller, S., Teichmann, J., Vizman, C., Totally geodesic subgroups of diffeomorphisms, J. Geom. Phys., 42 (2002) 342 354. [21] Haller, S. and Vizman, C., Nonlinear Grassmannians as coadjoint orbits, Preprint arxiv:0305089 (2003) [22] Haller, S., and Vizman, C., Non-linear Grassmannians as coadjoint orbits, Math. Ann., 329 (2004) 771 785. [23] Hirsch, M. W., Differential topology, Graduate Texts in Math. 33, Springer, 1976. [24] Holm, D., Marsden, J., Momentum maps and measure-valued solutions (peakons, filaments and sheets) for the EPDiff equation, in Festschrift for Alan Weinstein, Birkhäuser, Boston, 2003, 203 235. [25] Holm, D., Putkaradze, V., and Tronci, C., Geometric gradient-flow dynamics with singular solutions, Physica D: Nonlinear Phenomena, 237 (2008) 2952-2965. [26] Holm, D., Vizman, C., Dual pairs in resonances, Journal of Geometric Mechanics, 3 (2012) 297 311.

References 83 [27] Hunter, J.K., Saxton, R., Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498 1521. [28] Inamoto, T., Symplectic structures oin the chirally gauged WZW model, Phys. Rev. D. 45 (1992) 1276 1290. [29] Ismagilov, R.S., Representations of Infinite-Dimensional Groups, AMS Translations of Mathematical Monographs, 152, American Mathematical Society, Providence, RI, 1996. [30] Ismagilov, R. S., M. Losik, and P. W. Michor, A 2-cocycle on a group of symplectomorphisms, Moscow Math. J., 6 (2006) 307 315. [31] Iwai, T., On reduction of two degrees of freedom Hamiltonian systems by an S 1 action and SO 0 (1,2) as a dynamical group, J. Math. Phys., 26 (1985) 885 893. [32] Jovanović, B., Noncommutative integrability and action-angle variables in contact geometry Preprint arxiv:1103.3611 (2011) [33] Kazhdan, D., Kostant, B., Sternberg, S., Hamiltonian group actions and dynamical systems of Calogero type, Commun. Pure Appl. Math., 31 (1978) 481-507. [34] Kerbrat, Y. and Souici-Benhammadi, Z., Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993) 81 86. [35] Khesin, B., Symplectic structures and dynamics on vortex membranes, Moscow Math. J., 12 (2012) 413-434. [36] Khesin, B., J. Lenells, G. Misio lek, and S. Preston, Geometry of diffeomorphism groups, complete integrability, and geometric statistics, GAFA, 23 (2013) 334 366. [37] Khesin, B., Misiolek, G., Euler equations on homogeneous spaces and Virasoro orbits, Adv. Math., 176 (2003) 116 144. [38] Khesin, B., Lenells, J., and Misio lek, G., Generalized Hunter-Saxton equation and geometry of the circle diffeomorphism group, Math. Ann., 342 (2008) 617 656. [39] Kirillov, A.A., The orbit method II, Infinite dimensional Lie groups and Lie algebras. Representation theory of groups and algebras, Contemp. Math., 145, American Mathematical Society, Providence, RI, 1993, 33 63.

84 References [40] Kriegl, A., Michor, P.W., The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs 53, American Mathematical Society, Providence, RI, 1997. [41] Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier, 46 (1996) 1241 1272. [42] Kostant, B., Quantization and unitary rpresentations, in Lectures in Modern Analysis and Appl. 3, Lect. Notes Math., 170 (1970), 87 208. [43] Kouranbaeva, S., The Camassa Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999) 857 868. [44] Lawson, H.B., Michelson, M.-L., Spin Geometry, Princeton University Press, New Jersey, 1989. [45] Lenells, J., Misio lek, G., and Tığlay, F., Integrable evolution equations on spaces of tensor densities and their peakon solutions, Comm. Math. Phys., 299 (2010) 129 161. [46] P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company, 1987. [47] A. Losev, G. Moore, N. Nekrasov, S. Shatashvili, Central extensions of gauge groups revisited, Sel. Math., New Ser., 4 (1998) 117-123. [48] J.E. Marsden, Generic Bifurcation of Hamiltonian Systems with Symmetry, appendix to Physica D, 24 (1987) 391 405. [49] Marsden, J.E., Ratiu, T., Weinstein, A., Semidirect product and reduction in mechanics, Trans. Amer. Math. Soc., 281 (1984) 147 177. [50] Marsden, J.E., Ratiu, T., Introduction to Mechanics and Symmetry, 2nd edition, Springer, 1999. [51] Marsden, J., Weinstein, A., Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D, 7 (1983) 305 323. [52] McDuff, D., Salamon, D., Introduction to Symplectic Topology, Oxford Math. Monogr., 1998. [53] Michor, P.W., Ratiu, T., On the geometry of the Virasoro-Bott group, J. Lie Theory, 8 (1998) 293 309. [54] Michor, P. W., and Vizman, C., n-transitivity of certain diffeomorphisms groups, Acta Math. Univ. Comenianae, LXIII (1994) 221 225. [55] J. Mickelsson, Kac-Moody groups, topology of the Dirac determinant bundle and fermionization, Comm. Math. Phys., 110 (1987) 173 183.

References 85 [56] Misiolek, G., A shallow water equation as a geodesic flow on the Bott Virasoro group, J. Geom. Phys., 24 (1998) 203 208. [57] Misiolek, G., Conjugate points in the Bott Virasoro group and the KdV equation, Proc. Amer. Math. Soc., 125 (1997) 935 940. [58] Molitor, M., The non-linear Grassmannian as homogeneous Fréchet manifold, Journal of Lie Theory, 18 (2008) 523 539. [59] Neeb, K.-H., Abelian extensions of infinite-dimensional Lie groups, Travaux Math., XV (2004) 69 194. [60] K.-H. Neeb, Lie groups of bundle automorphisms and their extensions, in Developments and Trends in Infinite-Dimensional Lie Theory, Progress in Mathematics, 288, 2011, pp. 281 338. [61] Neeb, K.-H., and Vizman, C., Flux homomorphisms and principal bundles over infinite dimensional manifolds, Monatshefte für Mathematik, 139 (2003) 309 333. [62] Neeb, K.-H., Vizman, C., An abstract setting for Hamiltonian actions. Monatshefte für Mathematik, 159 (2010) 261 288. [63] Omori, H., Infinite dimensional Lie groups, AMS Translations of Mathematical Monographs, 158, American Mathematical Society, Providence, RI, 1996. [64] Ono, K., FloerNovikov cohomology and the flux conjecture Geometric and Functional Analysis, 16 (2006) 981 1020. [65] Ortega, J.-P. and T. S. Ratiu, Momentum maps and Hamiltonian reduction, Progress in Mathematics, 222 Boston, Birkhäuser, 2004. [66] Ovsienko, V.Y., Khesin, B.A., Korteweg de Vries superequations as an Euler equation, Funct. Anal. Appl., 21 (1987) 329 331. [67] Ovsienko, V., Roger, C., Generalizations of Virasoro group and Virasoro algebra through extensions by modules of tensor densities on S 1, Indag. Mathem., N.S., 9 (1998) 277-288. [68] Ratiu, T., Schmid, R.: The differentiable structure of three remarkable diffeomorphism groups. Math. Z., 177 (1981) 81 100. [69] Roger, C., Extensions centrales d algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations, Rep. Math. Phys., 35 (1995) 225-266. [70] Shashikanth, B.N., Vortex dynamics in R 4, J. Math. Phys., 53 (2012).

86 References [71] Souriau, J.-M., Structure des systemes dynamiques, Dunod, Paris, 1970. [72] Tığlay, F., Vizman, C., Generalized Euler-Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications, Lett. in Math. Phys., 97 (2011) 45 60. [73] Thurston, W.P., On the structure of volume preserving diffeomorphisms, unpublished. [74] Vizman, C., The group structure for jet bundles over Lie groups, Journal of Lie Theory, 23 (2013) 885 897. [75] Vizman, C., Induced differential forms on manifolds of functions, Archivum Mathematicum, 47 (2011) 201 215. [76] Vizman, C., Abelian extensions via prequantization, Ann. of Global Analysis and Geometry, 39 (2011) 361 386. [77] Vizman, C., Lichnerowicz cocycles and central Lie group extensions, Analele Univ. din Timişoara, 48 (2010) 285 297. [78] Vizman, C., Central extensions of coverings of symplectomorphism groups, J. Lie Theory, 19 (2009) 237 249. [79] Vizman, C., Geodesic Equations on Diffeomorphism Groups, Ed. Orizonturi Universitare, Timişoara, 2008. [80] Vizman, C., The path group construction of Lie group extensions, J. Geom. and Phys., 58 (2008) 860 873. [81] Vizman, C., Abstract Kelvin Noether theorems for Lie group extensions, Lett. in Math. Phys., 84 (2008) 245 256. [82] Vizman, C., Cocycles and stream functions in quasigeostrophic motion, J. Nonlinear Math. Phys., 15 (2008) 140 146. [83] Vizman, C., Geodesic equations on diffeomorphism groups, Symmetry Integrability and Geometry - Methods and Applications, 4 (2008). [84] Vizman, C., Invariant forms on Lie algebra extensions, Comm. Algebra, 35 (2007) 1761 1776. [85] Vizman, C., Central extensions of the Lie algebra of symplectic vector fields, J. Lie Theory, 16 (2006) 297 309. [86] Vizman, C., Central extensions of semidirect products and geodesic equations, Phys. Lett. A, 330 (2004) 460 469.

References 87 [87] Vizman, C., Geodesics on extensions of the Lie algebra of vector fields on the circle, Geometry and Analysis on Lie Groups, Banach Center Publications, 55 (2002) 165 172. [88] Vizman, C., Geodesics and curvature of semidirect product groups, Rend. Circ. Mat. di Palermo, Serie II, Suppl. 66 (2001) 199 206. [89] Vizman, C., Geodesics on extensions of Lie groups and stability: the superconductivity equation, Phys. Lett. A, 284 (2001) 23 30. [90] Vizman, C., Curvature and geodesics on diffeomorphism groups, in Proceedings of the Fourth International Workshop on Differential Geometry, Braşov, Romania, 1999, 298 305. [91] Weinstein, A., Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.) 16 (1987) 101 104. [92] Weinstein, A., The local structure of Poisson manifolds, J. Diff. Geom., 18 (1983) 523 557. [93] Zeitlin, V., Vorticity and waves: geometry of phase-space and the problem of normal variables, Phys. Lett. A, 164 (1992) 177 183. [94] Zeitlin, V., Pasmanter, R.A., On the differential geometric approach to geophysical flows, Phys. Lett. A, 189 (1994) 59 63.