Molecular Weight of Polymers *

Similar documents
Sem /2007. Fisika Polimer Ariadne L. Juwono

COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download)

Polymers Reactions and Polymers Production (3 rd cycle)

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1

6. Lichtstreuung (2) Statische Lichtstreuung

Comparison of Polymer Separation by Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation

Part 8. Special Topic: Light Scattering

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC

Basics of UV-Visible Spectroscopy *

Chapter 14. Molar Mass Distribution.

GPC / SEC Theory and Understanding

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Setting the Standard for GPC. Complete Guide for GPC / SEC / GFC Instrumentation and Detection Technologies. The Right Instrument for Your Application

c) fitting of the NMR intensity in dependence of the recycle delays 4

Tips & Tricks GPC/SEC: From a Chromatogram to the Molar Mass Distribution

BET Surface Area Analysis of Nanoparticles *

PAPER No.6: PHYSICAL CHEMISTRY-II (Statistical

Ion Chromatography *

Macromolecular Chemistry

[VIM = 4 R3 gx ( 3)

Tips & Tricks GPC/SEC: Quantify and Get More Than Molar Mass Averages

Polymer analysis by GPC-SEC. Technical Note. Introduction

Determination of Molecular Weight and Its Distribution of Rigid-Rod Polymers Determined by Phase-Modulated Flow Birefringence Technique

Chap. 2. Molecular Weight and Polymer Solutions

Molecular Weights of Copolymers Obtained by Gel Permeation Chromatography Light Scattering

GPC - Gel Permeation Chromatography. aka Size Exclusion Chromatography- SEC

PAPER No. 6: PHYSICAL CHEMISTRY-II (Statistical

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

How Molecular Weight and Branching of Polymers Influences Laser Sintering Techniques

(3) A UNIVERSAL CALIBRATION FOR GEL PERMEATION CHROMATOGRAPHY. [TIM = 4 R3 gx POLYMER LETTERS VOL. 5, PP (1967)

Maximizing Performance Through GPC Column Selection

Chapter 3. Molecular Weight. 1. Thermodynamics of Polymer Solution 2. Mol Wt Determination

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution

Light scattering Small and large particles

Basic Principles of Supercritical Fluid Chromatography and Supercrtical Fluid Extraction

Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments

Gel Permeation Chromatography Basics and Beyond eseminar March 13, Jean Lane Technical and Applications Support LSCA, Columns and Supplies

Characterization of Group (II-VI) Semiconductor Nanoparticles by UV-visible Spectroscopy *

Tools to Characterize and Study Polymers.

Clearing the Confusion: GPC, SEC, GFC What, When, Why, and How?

Chromatography Outline

Gel Permeation Chromatography (GPC) or Size Exclusion Chromatography (SEC)

Calibration and Normalization of MALS Detectors

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Particle Characterization Laboratories, Inc.

Kolligative Eigenschaften der Makromolekülen

Relationship of Rheological Behavior and Molecular Architecture for LDPE Designed for Extrusion Coating. Bert Nijhof Technical Paper-7603

High Performance Liquid Chromatography

Supercritical Fluid Chromatography *

HPLC Background Chem 250 F 2008 Page 1 of 24

Lecture 4 : Gel Permeation or Size Exclusion Chromatography

Fourier Transform Infrared Spectroscopy of Metal Ligand Complexes *

Chapter 4 Polymer solutions

ICP-AES Analysis of Nanoparticles *

Organolithium Compounds *

CHEM-E2130 Polymer Properties Steve Spoljaric

Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE

Physical Chemistry of Polymers (4)

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS

ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY

Protein separation and characterization

Band Gap Measurement *

Size exclusion chromatography of branched polymers: Star and comb polymers

Chromatography. Gas Chromatography

Progress toward reliable NC molecular mass distribution by GPC

Issued: 02/07/06 Spring 2006 Due: 02/16/06 10 points/problem

Determination of Polymer Modifier in Asphalt

CHEM-E2130 Polymer Properties

High Performance Liquid Chromatography

Properties of Liquids *

Puzzled? Look it up in our GPC Glossary

High Performance Liquid Chromatography

High Performance Liquid Chromatography

Gas Chromatography. A schematic diagram of a gas chromatograph

Analytical Chemistry

Gel Permeation Chromatography

RESOLUTION OENO 33/2004 DETERMINATION OF SHIKIMIC ACID IN WINE BY HPLC AND UV-DETECTION

STUDY INITIATION DATE November 18, ANALYTICAL REPORT DATE December 12, AUTHORS Andrew Bosio Timothy D. Ballard

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

No.106. Aqueous SEC Columns for Analysis of Cationic Polymers: TSKgel PWXL-CP Series. Contents. Page

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Gel Permeation Chromatography

Skript zum Praktikum. (Lab course macromolecular chemistry: physical chemistry )

Optimizing GPC Separations

Exam III, March 27, 2012, 100 pts Polymer Chemistry, CHEM 466, Spring 2012 Texas A&M University, College Station, TX, USA

Quadratic Functions and Graphs *

How to use GPC/SEC for compositional analysis

LUMEFANTRINUM LUMEFANTRINE

Macromolecular colloids. Size and shape of linear macromolecules. Osmosis and osmotic pressure.

CHEM 429 / 529 Chemical Separation Techniques

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg

Introduction to Chromatography

ALE 24. Colligative Properties (Part 2)

OVERVIEW INTRODUCTION. Michael O Leary, Jennifer Gough, Tanya Tollifson Waters Corporation, Milford, MA USA

Supporting Information

Catalyst Characterization Using Thermal Conductivity Detector *

Analysis of Fragile Ultra-High Molar Mass. d Chromatography. Amandaa K. Brewer October 22, 2015

Practical Steps in GPC Method Development

Viscosity * Desmond Schipper Andrew R. Barron. 1 Introduction

What is the volume of the unit cell of Ni in ml?

Transcription:

OpenStax-CNX module: m43550 1 Molecular Weight of Polymers * Sehmus Ozden Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Introduction Knowledge of the molecular weight of polymers is very important because the physical properties of macromolecules are aected by their molecular weight. For example, shown in Figure 1 the interrelation between molecular weight and strength for a typical polymer. Figure 1: Dependence of mechanical strength on polymer molecular weight. Adapted from G. Odian, Principles of Polymerization, 4 th edition, Willey-Interscience, New York (2004). The melting point of polymers are also slightly depend on their molecular weight. (Figure 2) shows relationship between molecular weight and melting temperatures of polyethylene (Figure 3). Most linear polyethylenes have melting temperatures near 140 C. The approach to the theoretical asymptote, that is a line whose distance to a given curve tends to zero, indicative that a theoretical polyethylene of innite molecular weight (i.e., M = ) would have a melting point of 145 C. * Version 1.1: May 27, 2012 2:07 pm -0500 http://creativecommons.org/licenses/by/3.0/

OpenStax-CNX module: m43550 2 Figure 2: The molecular weight-melting temperature relationship for the alkane series. Adapted from L. H. Sperling, Introduction to physical polymer science, 4 th edition, Wiley-Interscience, New York (2005). Figure 3: Structure of polyethylene. There are several ways to calculate molecular weight of polymers like number average of molecular weight, weight average of molecular weight, Z-average molecular weight, viscosity average molecular weight, and distribution of molecular weight. 2 Molecular weight of polymers 2.1 Number average of molecular weight (M n ) Number average of molecular weight is measured to determine number of particles. Number average of molecular weight is the total weight of polymer,, divided by the number of polymer molecules,. The number average molecular weight (M n ) is given by, where M i is molecular weight of a molecule of oligomer n, and N i is number of molecules of that molecular weight.

OpenStax-CNX module: m43550 3 Example 1 Consider a polymer sample comprising of 5 moles of polymer molecules having molecular weight of 40.000 g/mol and 15 moles of polymer molecules having molecular weight of 30.000 g/mol. 2.2 Weight average of molecular weight (M w ) Weight average of molecular weight (M w ) is measured to determine the mass of particles. M w dened as, where M i is molecular weight of a molecule of oligomer n, and N i is number of molecules of that molecular weight. Example 2 Consider the polymer described in Example 1. Exercise 1 (Solution on p. 17.) Calculate the M W for a polymer sample comprising of 9 moles of polymer molecules having molecular weight of 30.000 g/mol and 5 moles of polymer molecules having molecular weight of 50.000 g/mol.

OpenStax-CNX module: m43550 4 2.3 Z-average molecular weight (M z ) The Z-average molecular weight (M z ) is measured in some sedimentation equilibrium experiments. M z isn't common technique for molecular weight of polymers. The molar mass depends on size and mass of the molecules. The ultra centrifugation techniques employ to determine M z. M z emphasizes large particles and it denes the EQ, where M i is molecular weight and N i is number of molecules. Example 3 Consider the polymer described in Example 1. Exercise 2 (Solution on p. 17.) Calculate the M Z for a polymer sample comprising of 10 moles of polymer molecules having molecular weight of 20.000 g/mol and 2 moles of polymer molecules having molecular weight of 25,000 g/mol. 2.4 Viscosity average molecular weight (M v ) One of the ways to measure the average molecular weight of polymers is viscosity of solution. Viscosity of a polymer depend on concentration and molecular weight of polymers. Viscosity techniques is common since it is experimentally simple. Viscosity average molecular weight denes as, where M i is molecular weight and N i is number of molecules, a is a constant which depend on the polymer-solvent in the viscosity experiments. When a is equal 1, M v is equal to the weight average molecular weight, if it isn't equal 1 it is between weight average molecular weight and the number average molecular weight. 2.5 Distribution of molecular weight Molecular weight distribution is one of the important characteristic of polymer because it aects polymer properties. A typical molecular distribution of polymers show in Figure 4.. There are various molecular weight in the range of curve. The distribution of sizes in a polymer sample isn't totally dened by its central tendency. The width and shape of distribution must be known. It is always true that the various range

OpenStax-CNX module: m43550 5 molecular weight is. The equality is occurring when all polymer in the sample have the same molecular weight. Figure 4: A schematic plot of a distribution of molecular weights along with the rankings of the various average molecular weights. Adapted from J. A. Nairn, Oregon State University (2003). 3 Molecular weight analysis of polymers 3.1 Gel permeation chromatography (GPC) Gel permeation chromatography is also called size exclusion chromatography. It is widely used method to determine high molecular weight distribution. In this technique, substances separate according to their molecule size. Firstly, large molecules begin to elute then smaller molecules are eluted Figure 5. The sample is injected into the mobile phase then the mobile phase enters into the columns. Retention time is the length of time that a particular fraction remains in the column. As shown in Figure 5, while the mobile phase passes through the porous particles, the area between large molecules and small molecules is getting increase. GPC gives a full molecular distribution, but its cost is high.

OpenStax-CNX module: m43550 6 Solvent ow through column. Adapted from A. M. Striegel, W. W. Yau, J. J. Kirkland, and D. D. Bly. Modern Size-Exclusion Liquid Chromatography- Practice of Gel Permeation and Gel nd Filtration Chromatography, 2 Edition. Hoboken. N.J. (2009). Figure 5: According to basic theory of GPC, the basic quantity measured in chromatography is the retention volume, (5), where V0 is mobile phase volume and Vp is the volume of a stationary phase. K is a distribution coe cient related to the size and types of the molecules. (5) The essential features of gel permeation chromatography are shown in Figure 6. Solvent leaves the solvent supply, then solvent is pumped through a lter. The desired amount of ow through the sample column is adjusted by sample control valves and the reference ow is adjusted that the ow through the reference and ow through the sample column reach the dedector in common front. The reference column is used to remove any slight impurities in the solvent. In order to determine the amount of sample, a detector is located at the end of the column. Also, detectors may be used to continuously verify the molecular weight of species eluting from the column. The ow of solvent volume is as well monitored to provide a means of characterizing the molecular size of the eluting species.

OpenStax-CNX module: m43550 7 Figure 6: Schematic of gel permeation chromatography system. As an example, consider the block copolymer of ethylene glycol (PEG, Figure 10) and poly(lactide) (PLA, Figure 8), i.e., Figure 9. In the rst step starting with a sample of PEG with a M n of 5,700 g/mol. After polymerization, the molecular weight increased because of the progress of lactide polymerization initiated from end of PEG chain. Varying composition of PEG-PLA shown in Table 1 can be detected by GPC (Figure 10). Figure 7: The structure of polyethyleneglycol (PEG).

OpenStax-CNX module: m43550 8 Figure 8: The ring-opening polymerization of lactide to polylactide. Figure 9: The structure of PEG-PLA block copolymer. Figure 10: Gel permeation chromatogram of (a) PEG (M W = 5,700 g/mol) and (b) PEG-PLA block copolymer (M W = 11,000 g/mol). Adapted from K. Yasugi, Y. Nagasaki, M. Kato, K. Kataoka, J. Control. Release, 1999, 62, 89.

OpenStax-CNX module: m43550 9

OpenStax-CNX module: m43550 10 Polymer M n of PEG M w /M n of PEG M n of PLA M w /M n of block copolymer PEG-PLA(41-12) PEG-PLA(60-30) PEG-PLA(57-54) PEG-PLA(61-78) 4100 1.05 1200 1.05 0.29 6000 1.03 3000 1.08 0.50 5700 1.03 5400 1.08 0.95 6100 1.03 7800 1.11 1.28 Weight ratio of PLA to PEG Table 1: Characteristics of PEG-PLA block copolymer with varying composition. Adapted from K. Yasugi, Y. Nagasaki, M. Kato, and K. Kataoka, J. Control Release, 1999, 62, 89. 3.2 Light-scattering One of the most used methods to characterize the molecular weight is light scattering method. When polarizable particles are placed in the oscillating electric eld of a beam of light, the light scattering occurs. Light scattering method depends on the light, when the light is passing through polymer solution, it is measure by loses energy because of absorption, conversion to heat and scattering. The intensity of scattered light relies on the concentration, size and polarizability that is proportionality constant which depends on the molecular weight. Figure 11 shows light scattering o a particle in solution. Figure 11: Modes of scattering of light in solution.

OpenStax-CNX module: m43550 11 A schematic laser light-scattering is shown in Figure 12. A major problem of light scattering is to prepare perfectly clear solutions. This problem is usually accomplished by ultra-centrifugation. A solution should be as possible as clear and dust free to determine absolute molecular weight of polymer. The advantages of this method, it doesn't need calibration to obtain absolute molecular weight and it can give information about shape and M w information. Also, it can be performed rapidly with less amount of sample and absolute determinations of the molecular weight can be measured. The weaknesses of the method is high price and most times it requires dicult clarication of the solutions. Figure 12: Schematic representation of light scattering. Adapted from J. A. Nairn, polymer characterization, Material science and engineering 5473, spring 2003. The weight average molecular weight value of scattering polymers in solution related to their light scattering properties that dene by (12), where K is the wave vector, that dened by (12). C is solution concentration, R(θ) is the reduced Rayleigh ratio, P(θ) the particle scattering function, θ is the scattering angle, A is the osmotic virial coecients, where n 0 solvent refractive index, λ the light wavelength and N a Avagadro's number. The particle scattering function is given by (12), where R z is the radius of gyration. (12) (12) (12)

OpenStax-CNX module: m43550 12 Weight average molecular weight of a polymer is found from extrapolation of data in the form of a Zimm plot (Figure 13). Experiments are performed at several angles and at least at 4 dierent concentrations. The straight line extrapolations provides M w. Figure 13: A typical Zimm plot of light scattering data. Adapted from M. P. Stevens, Polymer Chemistry an Introduction, 3 rd edition, Oxford University Press, Oxford (1999). 3.3 X-ray scattering X-rays are a form of electromagnetic wave with wavelengths between 0.001 nm and 0.2 nm. X-ray scattering is particularly used for semicrystalline polymers which includes thermoplastics, thermoplastic elastomers, and liquid crystalline polymers. Two types of X-ray scattering are used for polymer studies: 1. Wide-angle X-ray scattering (WAXS) which is used to study orientation of the crystals and the packing of the chains. 2. Small-angle X-ray scattering (SAXS) which is used to study the electron density uctuations that occur over larger distances as a result of structural inhomogeneities. Schematic representation of X-ray scattering shows in Figure 14.

OpenStax-CNX module: m43550 13 Figure 14: Schematic diagram of X-ray scattering. Adapted from B. Chu, and B. S. Hsiao, Chem. Rev. 2001,101, 1727. At least two SAXS curves are required to determine the molecular weight of a polymer. The SAXS procedure to determine the molecular weight of polymer sample in monomeric or multimeric state solution requires the following conditions. a. The system should be monodispersed. b. The solution should be dilute enough to avoid spatial correlation eects. c. The solution should be isotropic. d. The polymer should be homogeneous. 3.4 Osmometer Osmometry is applied to determine number average of molecular weight (M n ). osmometer: There are two types of 1. Vapor pressure osmometry (VPO). 2. Membrane osmometry. Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with M n below 10,000 40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. A typical vapor osmometry shows in the Figure 15. Vapor pressure is very sensitive because of this reason it is measured indirectly by using thermistors to measure voltage changes caused by changes in termperature.

OpenStax-CNX module: m43550 14 Figure 15: Schematic vapor pressure osmometry. Adapted from http://www.gallay.com.au/node/186 1 Membrane osmometry is absolute technique to determine M n (Figure 16). The solvent is separated from the polymer solution with semipermeable membrane that is strongly held between the two chambers. One chamber is sealed by a valve with a transducer attached to a thin stainless steel diaphragm which permits the measurement of pressure in the chamber continuously. Membrane osmometry is useful to determine M n about 20,000-30,000 g/mol and less than 500,000 g/mol. When M n of polymer sample more than 500,000 g/mol, the osmotic pressure of polymer solution becomes very small to measure absolute number average of molecular weight. In this technique, there are problems with membrane leakage and symmetry. The advantages of this technique is that it doesn't require calibration and it gives an absolute value of M n for polymer samples. 1 http://www.gallay.com.au/node/186

OpenStax-CNX module: m43550 15 Figure 16: Schematic representative of membrane osmometry. Adapted from http://www.ickr.com/photos/mitopencourseware/3327963527/ 2. 4 Summary Properties of polymers depend on their molecular weight. There are dierent kind of molecular weight and each can be measured by dierent techniques. The summary of these techniques and molecular weight is shown in the Table 2. Method Type of molecular weight Range of application Light scattering M w Membrane osmometry M n 10 4-10 6 Vapor phase osmometry M n 40,000 X-ray scattering M w, n, z 10 2 to Table 2: Summary of techniques of molecular weight of polymers. 5 Bibliography G. Odian, Principle of Polymerization, 4 th edition, Willey Intersicence, New York (2004). M. P. Stevens, Polymer Chemistry an Introduction, 3 rd Edition, Oxford University Press, Oxford (1998). T. Tanaka, Experimental Methods in Polymer Science, Academic Press, New York (1999). 2 http://www.ickr.com/photos/mitopencourseware/3327963527/

OpenStax-CNX module: m43550 16 L. H. Sperling, Introduction to physical polymer science, 4 th edition, Wiley-Interscience, New York (2006). R. W. Nunes, J. R. Martin, and J. F. Johnson, Poly. Eng. Sci., 1982, 22, 4. A. Horta and M. A. Pastoriza, J. Chem. Educ., 2007, 84, 7. K. Yasugi, Y. Nagasaki, M. Kato, and K. Kataoka, J. Control. Release, 1999, 62, 89. B. Chu and B. S. Hsiao, Chem. Rev., 2001, 101, 1727. V. E. Eskin, Sov. Phys. Ups., 1964, 7, 2. B. H. Bersted, J. Appl. Polym. Sci., 1973, 17, 1415. A. H. Compton, Physics, 1925, 11, 303 C. H. Hsu, P. M. Peacock, R. B. Flippen, S. K. Manohar, and A. G. MacDiarmid, Synth. Met., 1993, 60, 233. http://www.gallay.com.au/node/186 3 http://www.ickr.com/photos/mitopencourseware/3327963527/ 4 3 http://www.gallay.com.au/node/186 4 http://www.ickr.com/photos/mitopencourseware/3327963527/

OpenStax-CNX module: m43550 17 Solutions to Exercises in this Module Solution to Exercise (p. 3) Solution to Exercise (p. 4)