Recent&results&from&the&Alpha&Magne4c& Spectrometer&(AMS)&Experiment&& on&the&interna4onal&space&sta4on

Similar documents
Probing quark matter in compact stars with cosmic rays. Jes Madsen University of Aarhus, Denmark

The AMS detector: a particle physics experiment in space

Cosmic rays as seen from Space with AMS

Southeast University and AMS-02 Experiment

AMS Results B.Bertucci University & INFN Perugia. Moscow, Aug.26, Wiseman/NASA/REX

First AMS Results. Institut für Experimentelle Kernphysik.

Purpose of the meeting. cross fertilization among different communities working on antimatter

AMS-02 measurement of cosmic ray positrons and electrons

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen

Primary Cosmic Rays : what are we learning from AMS

The Latest Results from AMS on the International Space Station

The AMS Experiment. S. Ting

Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment

AMS Days at CERN and Latest Results from the AMS Experiment on the International Space Station

Cosmic Ray Physics with the Alpha Magnetic Spectrometer

Measurement of CR anisotropies with the AMS detector on the ISS

AMS Results on the Properties of the Fluxes of Elementary Particles and Nuclei in Primary Cosmic Rays

Current and Future balloon and space experiments L. Derome (LPSC Grenoble) Tango, May 4-6th, 2009

THE ELECTROMAGNETIC CALORIMETER OF THE AMS-02 EXPERIMENT

!"#$%&'$(")*&$+,)*$-"+./&'$0,1&'2&$23 $4 &/1',"3 $5 -,6$!0($789&'23 &+1$,"#$%&'$:(( ;'<#=$-'=$(1&#,+$()*,&/

Antiproton Flux and Antiproton-to-Proton Flux Ratio in Primary Cosmic Rays Measured with AMS on the Space Station

THE AMS RICH COUNTER

PPC AMS2 (Lecture 10)

Indirect Search for Dark Matter with AMS-02

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Properties of Elementary Particle Fluxes in Cosmic Rays. TeVPA Aug. 7, Yuan-Hann Chang National Central University, Taiwan

Galactic Cosmic Ray Propagation in the AMS 02 Era

Antiproton and Electron Measurements and Dark Matter Indirect Searches. Piergiorgio Picozza INFN and University of Rome Tor Vergata

arxiv: v1 [physics.ins-det] 3 Feb 2014

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy

Indirect Dark Matter search in cosmic rays. F.S. Cafagna, INFN Bari

P A M E L A Payload for Antimatter / Matter Exploration and Light-nuclei Astrophysics

Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter

Antimatter in Space. Mirko Boezio INFN Trieste, Italy. PPC Torino July 14 th 2010

GeV to Multi-TeV Cosmic Rays: AMS-02 Status and Future Prospects

Cosmic Ray panorama. Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays

Trento Summary: Antimatter & Dark Matter Search. Status Dark Matter Search

The High Energy cosmic-radiation Detection (HERD) Facility onboard China s Future Space Station

Präzisionsmessungen zur kosmischen Höhenstrahlung im Weltraum Das AMS Experiment auf der ISS Prof. Dr. Stefan Schael RWTH Aachen

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT

PAMELA satellite: fragmentation in the instrument

Cosmic Rays in the Galaxy

PAMELA: a Satellite Experiment for Antiparticles Measurement in Cosmic Rays

Precision Cosmic Ray physics with space-born experiment

Results from the PAMELA Space Experiment

Performance of the AMS-02 Electromagnetic Calorimeter in Space

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA

The AMS-02 Anticoincidence Counter

Experimental review of high-energy e e + and p p spectra

Particle Physics, Astrophysics and Quantum Field Theory. The Status of the CMS Experiment

The Alpha Magnetic Spectrometer on the International Space Station

Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space

Detection of Antimatter in our Galaxy

Antiparticle detection in space for dark matter search: the PAMELA experiment.

High Energy cosmic-radiation Detection (HERD) Facility onboard China s Space Station

The Ring Imaging Cherenkov detector of the AMS experiment: test beam results with a prototype

Measurements of Heavy Nuclei with the CALET Experiment

The LHCf experiment at LHC

Lomonosov Moscow State University. NUCLEON Chemical Composition and Energy Spectra of Cosmic Rays at TeV

Detection and measurement of gamma rays with the AMS-02 detector

Introduction to Cosmic Rays Data Analysis Issues. Nicola De Simone INFN and University of Rome Tor Vergata

AMS : A Cosmic Ray Observatory

Detection and measurement of gamma rays with the AMS-02 detector

The space mission PAMELA

Eun-Suk Seo University of Maryland for the CREAM Collaboration

N U C L E O N. Satellite Mission. Present status.

The PAMELA Satellite Experiment: An Observatory in Space for Particles, Antiparticles and Nuclei in the Cosmic Rays

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Energy Spectrum of all Electrons and Positron Fraction

PoS(ICRC2017)1076. Studies of Cosmic-Ray Proton Flux with the DAMPE Experiment

Dark Matter Particle Explorer and Its First Results

A. Chukanov On behalf of OPERA collaboration JINR, Dubna TAUP 2011, Munich, 5-9 september, 2011

Towards Direction Dependent Fluxes With AMS-02

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. First Physics at CMS

arxiv: v1 [astro-ph] 13 Sep 2007

Status of the PAMELA silicon tracker

Introduction of CMS Detector. Ijaz Ahmed National Centre for Physics, Islamabad

Measurement of absolute energy scale of ECAL of DAMPE with geomagnetic rigidity cutoff

Fluxes of Galactic Cosmic Rays

Cosmic Ray Studies with PAMELA Experiment

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program

Measurement of the CR e+/e- ratio with ground-based instruments

Theory English (Official)

Jacopo Pinzino CERN HQL /05/2018

Introduction to CERN and CMS

CERN Council - Open Session 18 December Lorenzo Bonechi - INFN Firenze, Italy On behalf of the LHCf Collaboration

The Hadron Production Experiment at the PS, CERN

PoS(IDM2010)013. Antiproton and Electron Measurements and Dark Matter Searches in Cosmic Rays. Piergiorgio Picozza.

Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

Chapter 6.2: space based cosmic ray experiments. A. Zech, Instrumentation in High Energy Astrophysics

Final project report

First results on the high energy cosmic ray electron spectrum with the Fermi-LAT

Antimatter and dark matter: lessons from ballooning.

Cosmic Antimatter. Stéphane. Coutu The Pennsylvania State University. 3 rd. Astrophysics Arequipa,, Peru August 28-29, 29, 2008

High-resolution Study of Gamow-Teller Transitions

PoS(ICRC2017)168. PSD performance and charge reconstruction with DAMPE

Cosmic Ray Energetics And Mass (CREAM) Moriond 2005

The Silicon-Tungsten Tracker of the DAMPE Mission

The FP420 R&D Project

Transcription:

Recent&results&from&the&Alpha&Magne4c& Spectrometer&(AMS)&Experiment&& on&the&interna4onal&space&sta4on Federico Pilo - INFN Pisa Vulcano, May 19 th 2014

3 Experimental Challenges Search for Dark Matter χ + χ e + +. Signal/background=e + /p< 1/10 4 background rejection > 10 6 P e - e + Cosmic Rays Flux Ref: B Beischer et al 2009 New J. Phys. 11 105021 P

A Large Magnetic Spectrometer in Space : a game changing for the study of Cosmic Ray L. Baldini 2012 5"

AMS International Collaboration 16 Countries, 60 Institutes and 600 Physicists USA MIT - CAMBRIDGE NASA JOHNSON SPACE CENTER TEXAS A&M UNIVERSITY UNIV. OF HAWAII UNIV. OF MARYLAND - DEPT OF PHYSICS YALE UNIVERSITY - NEW HAVEN MEXICO UNAM NETHERLANDS ESA-ESTEC NIKHEF NLR FRANCE GAM MONTPELLIER LAPP ANNECY LPSC GRENOBLE SPAIN CIEMAT - MADRID I.A.C. CANARIAS. PORTUGAL LAB. OF INSTRUM. LISBON DENMARK UNIV. OF AARHUS FINLAND HELSINKI UNIV. UNIV. OF TURKU SWITZERLAND ETH-ZURICH UNIV. OF GENEVA ITALY ASI CARSO TRIESTE IROE FLORENCE INFN & UNIV. OF BOLOGNA INFN & UNIV. OF MILANO INFN & UNIV. OF PERUGIA INFN & UNIV. OF PISA INFN & UNIV. OF ROMA INFN & UNIV. OF TRENTO GERMANY RWTH-I RWTH-III MAX-PLANK INST. UNIV. OF KARLSRUHE RUSSIA I.K.I. ITEP KURCHATOV INST. MOSCOW STATE UNIV. ROMANIA ISS UNIV. OF BUCHAREST TURKEY METU CHINA BISEE (Beijing) IEE (Beijing) IHEP (Beijing) NLAA (Beijing) SJTU (Shanghai) SEU (Nanjing) SYSU (Guangzhou) KOREA EWHA KYUNGPOOK NAT.UNIV. TAIWAN SDU (Jinan) ACAD. SINICA (Taiwan) AIDC (Taiwan) CSIST (Taiwan) NCU (Chung Li) NCKU (Tainan) NCTU (Hsinchu) NSPO (Hsinchu) DOE sponsored experiment, NASA space operation 95% construction from Europe and Asia

AMS: A TeV precision, multipurpose spectrometer TRD Identify e +, e - TOF Z, β Silicon Tracker Z, P 1 TRD! TOF! 2 3-4 5-6 7-8 Tracker! Magnet ±Z ECAL E of e +, e -, γ TOF! RICH! 9 ECAL! RICH Z, β

Sensitive Search for the origin of Dark Matter with p/e + >10 6 p Tracker Entry TRD! TRD: P e + rejection >10 2 TOF! e + p TOF! RICH! e + Tracker! 0.50 X 0 Tracker Total ECAL! ECAL: P e + rejection >10 4 Tracker Exit a) Minimal material in the TRD and TOF So that the detector does not become a source of e +. b) A magnet separates TRD and ECAL so that e + produced in TRD will be swept away and not enter ECAL In this way the rejection power of TRD and ECAL are independent c) Matching momentum of 9 tracker planes with ECAL energy measurements

AMS Flight Electronics for Data Acquisition (DAQ) TRD: 5248 Signals 300,000 channels at 2 KHz, 650 computers designed and built by AMS TOF & ACC: 88 Signals Silicon Tracker: 196,608 Signals 1 TRD! TOF! 2 3-4 5-6 7-8 TOF! RICH! Tracker! Magnet ECAL: 2,916 Signals 9 ECAL! RICH: 10,800 * 2 Signals

TRD 24 Heaters 8 Pressure Sensors 482 Temperature Sensors AMS Flight Electronics for Thermal Control 1118 temperature sensors, 298 heaters 1 TOF & ACC 64 Temperature Sensors TRD! Silicon Tracker 4 -Pressure Sensors 32 Heaters 142 Temperature Sensors TOF! 2 3-4 5-6 7-8 TOF! RICH! 9 ECAL! Tracker! Magnet 68 Temperature Sensors ECAL 80 Temperature Sensors RICH 96 Temperature Sensors

Proton rejection at 90% e + efficiency TRD performance on ISS Rigidity (GV)

Events Time of Flight System Measures Velocity and Charge of particles Data from ISS" x10 3 x10 " 3 Z=2 σ β =2%% σ Time =80ps% Events Z=6 σ β =1.2 % σ Time =48ps% Velocity [Rigidity>20GV] Velocity [Rigidity>20GV] H& He& Li& Be& B& C& Plane 4 N& O& F& Ne& Na& Mg& Al& Si& P& S& Cl& Ar& Ca& 3, K& 4 Ti& Sc& V& Mn& Fe& Cr& Ni& Zn&

Alignment"accuracy"of"the"9"Tracker"layers"over"18"months"

RICH - Detector performance on ISS Z&=&7&(N)& P&=&2.088&TeV/c&& Z&=&10&(Ne)& P&=&0.576&TeV/c&& Z&=&13&(Al)& P&=&9.148&TeV/c&& Z&=&14&(Si)& P&=&0.951&TeV/c&& Z&=&15&(P)& P&=&1.497&TeV/c&& Z&=&16&(S)& P&=&1.645&TeV/c&& Z&=&19&(K)& P&=&1.686&TeV/c&& Z&=&20&(Ca)& P&=&2.382&TeV/c&& Z&=&21&(Sc)& P&=&0.390&TeV/c&& Z&=&22&(Ti)& P&=&1.288&TeV/c&& Z&=&23&(V)& P&=&0.812&TeV/c&& Z&=&26&(Fe)& P&=&0.795&TeV/c&&

ECAL Performance σ(e)/e = 10.4/ E + 1.4 %

Data from ISS: Proton rejection using the ECAL 15

Intensive Beam Tests at CERN AMS Particle Momentum (GeV/c) Positions Purpose Protons 400 + 180 1,650 Full Tracker alignment, TOF calibration, ECAL uniformity Electrons 100, 120, 180, 290 7 each TRD, ECAL performance study Positrons 10, 20, 60, 80, 120, 180 7 each TRD, ECAL performance study Pions 20, 60, 80, 100, 120, 180 7 each TRD performance to 1.2 TeV

17 May 16 th,, 2011 May 16, 2011

AMS today

AMS Operations TDRS Satellites White Sands, NM 24 hours x 365 days x 10-20 years Payload Operations Control Center at CERN

AMS Physics results

Physics results (ICRC 2013) 1. e + /(e +& +&e V &)&ra4o&and&anisotropy& 2. Proton&spectrum& 3. Helium&spectrum& 4. Electron&Spectrum& 5. Positron&Spectrum& 6. All&electron&spectrum& 7.&BoronVtoVCarbon&ra4o&

Physics of Positron Fraction: e + /(e + + e - ) M. Turner and F. Wilczek, Phys. Rev. D42 (1990) 1001; J. Ellis, 26th ICRC Salt Lake City (1999) astro-ph/9911440; H. Cheng, J. Feng and K. Matchev, Phys. Rev. Lett. 89 (2002) 211301; S. Profumo and P. Ullio, J. Cosmology Astroparticle Phys. JCAP07 (2004) 006; D. Hooper and J. Silk, Phys. Rev. D 71 (2005) 083503; E. Ponton and L. Randall, JHEP 0904 (2009) 080; G. Kane, R. Lu and S. Watson, Phys. Lett. B681 (2009) 151; D. Hooper, P. Blasi and P. D. Serpico, JCAP 0901 025 (2009) 0810.1527; B2 Y Z. Fan et al., Int. J. Mod. Phys. D19 (2010) 2011; M. Pato, M. Lattanzi and G. Bertone, JCAP 1012 (2010) 020. Positron"fracIon" 0.1" χ + χ e +. mχ=400 GeV mχ=800 GeV Collision&of&Cosmic&Rays& Dark"Ma<er"model"based"on"I."Cholis"et"al.,"arXiv:0810.5344"" 10& 10 2& e ± Energy [GeV] "

front view In the first 1.5 years in space, AMS has collected over 25 billion events. 6.8 million are electrons or positrons. Electron&E=982&GeV& Positron&E=636&GeV& Run/Event 1329775818/ 60709 Run/Event 133119-743/ 56950 side view front view side view

TRD performance on ISS TRD estimator = -ln(p e /(P e +P p )) Probability electron proton Normalized probabilities P e and P p ISS: 3 100 GeV TRD estimator

Separa4on&of&protons&and&electrons&with&ECAL&& Boosted Decision Tree, BDT: 19 variables describing 3D shower shape combined (B.Roe et al., NIM A543 (2005) 577) ISS data: 83 100 GeV protons ε e = 90% electrons

Results of the fit: he TRD Estimator shows clear separation between protons and positrons with a small charge confusion background Events TRD Estimator (83.2-100 GeV) positrons protons

First Result from the AMS on the ISS: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV Selected for a Viewpoint in Physics and an Editors Suggestion [Aguilar,M. et al (AMS Collaboration) Phys. Rev. Lett. 110, 1411xx (2013)]

AMS-02 (6.8 million e +, e events) The positron fraction is steadily increasing from 10 to ~250 GeV From 20 to 250 GeV, the slope decreases by an order of magnitude No structure in the spectrum Positron fraction

8% of total Data to 2028 Positron fraction A new phenomenon has occurred e ± energy [GeV]

Physics&Example:&Comparing&data&with&a&minimal&model.& Positron fraction Φ e + && =&C e + & Ε γ e+ &+&C s Ε γ s&e VE/E s&& & Φ e V & %=&C e V & Ε γ ev &+&C s Ε γ s&e VE/E s%! Data Fit to Data with Model χ 2 /d.f.%=&28.5/57 e ± energy [GeV] & The"agreement"between"the"data"and"the"model"shows"that"the" positron"fracion"spectrum"is"consistent"with"e ±!fluxes"each"of"which"is" the"sum"of"its"diffuse"spectrum"and"a"single"common"power"law"source.""

A&fit&to&the&data&in&the&energy&range&1&to&350&GeV&yields:& & γ ev % %γ e+ &=& 0.63&±&0.03,"i.e.,"the"diffuse"positron"spectrum"is"less" energeic"than"the"diffuse"electron"spectrum" $ γ& ev % &γ& S %%=&0.66±0.05,"i.e.,"the"source"spectrum"is"more"energeIc"than" the"diffuse"electron"spectrum" & C e+& /C ev& =&0.091&±%0.001,"i.e.,"the"weight"of"the"diffuse"positron"flux" amounts"to" 10%"of"that"of"the"diffuse"electron"flux" " C S& /C ev& %=&0.0078&±%0.0012,"i.e.,"the"weight"of"the"common"source" consitutes"only" 1%"of"that"of"the"diffuse"electron"flux" " 1/Ε s %=&0.0013&±%0.0007&GeV 1,"" """""""""""corresponding"to"a"cutoff"energy"of"760 +1000% GeV." V280&

Bergstrom,Bringmann,Cholis,Hooper,Weniger 2013 Also : Ibarra,Lamperstorfer,Silk 2013

Positron fraction Cutoff energy = DM Mass 700 GeV DM model Pulsar model Background in 10 years from now e ± energy [GeV] What will the Positron Fraction look like at high energy? 33

34 Comparison of p/p with Models in 10 more years Ref:&Donato&et&al.,&PRL&102,&071301&(2009)&

We now understand the systematic errors to ~1%. Studies with 1% statistical error will take time to collect the data.

Physics analysis nearing completion 1. An4protons&(0.5V300&GeV)& 2. An4VHe&(@&few&&10 8 &He&events)& & 3. Ion&fluxes& 4. Solar&physics&& 5..&

The Cosmos is the Ultimate Laboratory Cosmic rays can be observed at energies higher than any accelerator With AMS-02 on the ISS we have entered the era of precision Cosmic Ray physics to search for phenomena which exist in nature but we have not yet imagined nor had the tools to discover

SPARE SLIDES

Deviation from 1997 measurements in R-Phi coordinates, Z=0

AMS in SPS Test Beam, 2010 Particle Momentum (GeV/c) Positions Purpose Protons 400 + 180 1,650 Full Tracker alignment, TOF calibration, ECAL uniformity Electrons 100, 120, 180, 290 7 each TRD, ECAL performance study Positrons 10, 20, 60, 80, 120, 180 7 each TRD, ECAL performance study Pions 20, 60, 80, 100, 120, 180 7 each TRD performance to 1.2 TeV

May 16, 2011

Data analysis in AMS (2 years of data) AMS is a very precise particle physics detector. Precision physics results require attention to detail and a large analysis effort. The data are analysed by two independent AMS international teams. Group A Example: the positron fraction paper Group α B. Bertucci V. Choutko A. Kounine J. Berdugo S. Schael M. Incagli S. Rosier-Lees S. Haino, A. Oliva J. Casaus, P. Zuccon A. Contin

AMS Nuclei Measurement on ISS

" 45