Chapter 10 Rotation of a Rigid Object About a Fixed Axis

Similar documents
Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1

KEY. Physics 106 Common Exam 1, Spring, 2004

First, we will find the components of the force of gravity: Perpendicular Forces (using away from the ramp as positive) ma F

13.4 Work done by Constant Forces

Physics Honors. Final Exam Review Free Response Problems

PhysicsAndMathsTutor.com

C D o F. 30 o F. Wall String. 53 o. F y A B C D E. m 2. m 1. m a. v Merry-go round. Phy 231 Sp 03 Homework #8 Page 1 of 4

A little harder example. A block sits at rest on a flat surface. The block is held down by its weight. What is the interaction pair for the weight?

SECTION B Circular Motion

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law

Chapter 5 Exercise 5A

KINEMATICS OF RIGID BODIES

Correct answer: 0 m/s 2. Explanation: 8 N

SOLUTIONS TO CONCEPTS CHAPTER 6

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc

SOLUTIONS TO CONCEPTS CHAPTER

Your Thoughts. Mechanics Lecture 16, Slide 1

Mathematics of Motion II Projectiles

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:

SOLUTIONS TO CONCEPTS CHAPTER 10

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill

PHYSICS 211 MIDTERM I 21 April 2004

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM)

PROBLEM deceleration of the cable attached at B is 2.5 m/s, while that + ] ( )( ) = 2.5 2α. a = rad/s. a 3.25 m/s. = 3.

Physics 110. Spring Exam #1. April 16, Name

16 Newton s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

KINETICS OF RIGID BODIES PROBLEMS

HW Solutions # MIT - Prof. Kowalski. Friction, circular dynamics, and Work-Kinetic Energy.

The Wave Equation I. MA 436 Kurt Bryan

7.6 The Use of Definite Integrals in Physics and Engineering

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011

APPLICATIONS OF THE DEFINITE INTEGRAL

Study Guide Final Exam. Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines

Chapter 10 Solutions

Chapter 4 Force and Newton s Laws of Motion

DIRECT CURRENT CIRCUITS

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

JURONG JUNIOR COLLEGE

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

Physics 105 Exam 2 10/31/2008 Name A

Physics 2135 Exam 1 February 14, 2017

Centre of Mass, Moments, Torque

4-6 ROTATIONAL MOTION

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

Dynamics: Newton s Laws of Motion

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 16 CHAPTER 16

SAINT IGNATIUS COLLEGE

Math 120 Answers for Homework 13

_3-----"/- ~StudI_G u_id_e_-..,...-~~_~

l 2 p2 n 4n 2, the total surface area of the

Families of Solutions to Bernoulli ODEs

Physics Graduate Prelim exam

Model Solutions to Assignment 4

E S dition event Vector Mechanics for Engineers: Dynamics h Due, next Wednesday, 07/19/2006! 1-30

Student Session Topic: Particle Motion

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 8 (First moments of a volume) A.J.Hobson

Chapter 6 Notes, Larson/Hostetler 3e

Narayana IIT Academy

PREVIOUS EAMCET QUESTIONS

Math 211/213 Calculus III-IV. Directions. Kenneth Massey. September 17, 2018

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

Math 0230 Calculus 2 Lectures

Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram. Drum Brakes. Among the various types of devices to be studied, based on their practical use,

Torques, Atwood Machines, Angular Momentum. Click to add text

Terminal Velocity and Raindrop Growth

Version 001 HW#6 - Electromagnetic Induction arts (00224) 1 3 T

Answers to selected problems from Essential Physics, Chapter 3

Prof. Anchordoqui. Problems set # 4 Physics 169 March 3, 2015

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Phys 6321 Final Exam - Solutions May 3, 2013

Physics Jonathan Dowling. Lecture 9 FIRST MIDTERM REVIEW

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

PHYS Summer Professor Caillault Homework Solutions. Chapter 2

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

Narayana IIT Academy INDIA Sec: Sr. IIT_IZ Jee-Advanced Date: Time: 02:00 PM to 05:00 PM 2014_P2 MODEL Max.Marks:180 KEY SHEET

Math 8 Winter 2015 Applications of Integration

Math 426: Probability Final Exam Practice

Physics 101 Lecture 12 Equilibrium and Angular Momentum

Version 001 Review 1: Mechanics tubman (IBII ) During each of the three intervals correct

Problem Solving 7: Faraday s Law Solution

Numerical Problems With Solutions(STD:-XI)

IMPORTANT. Read these directions carefully:

Method of Localisation and Controlled Ejection of Swarms of Likely Charged Particles

The Properties of Stars

pivot F 2 F 3 F 1 AP Physics 1 Practice Exam #3 (2/11/16)

Phys 7221, Fall 2006: Homework # 6

Equations, expressions and formulae

University of Alabama Department of Physics and Astronomy. PH126: Exam 1

ES.182A Topic 32 Notes Jeremy Orloff

We divide the interval [a, b] into subintervals of equal length x = b a n

7.2 The Definite Integral

20. Direct and Retrograde Motion

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

PhysicsAndMathsTutor.com

Name Solutions to Test 3 November 8, 2017

west (mrw3223) HW 24 lyle (16001) 1

= 40 N. Q = 60 O m s,k

Transcription:

Chter ottion o igid Object About Fixed Axis P. () ω ωi. rd s α t. s 4. rd s it+ 4. rd s. s 8. rd (b) θ ω αt P.5 rev min π rd π ωi rd s, ω. min 6. s. rev () ω ωi π / t s α. 5.4 s (b) ω + ωi π π θ ωt t rd s s 7.4 rd 6 6 P.9 ω 5. rev s. π rd s. We will brek the motion into two stges: () eriod during which the tub seeds u nd () eriod during which it slows down. + π While seeding u, θ ωt π. rd s 8. s 4. rd π + While slowing down, θ ωt π. rd s. s 6. rd So, θtotl θ + θ π rd 5. rev P. () v rω ; ω v 45. m s r 5 m.8 rd s (b) P.4 () ( 45. m s) v r r 5 m ω v 5. m s r. m 5. rd s 8. m s towrd the center o trck (b) ω ω + α( Δ θ) i ω ωi ( θ ) ( 5. rd s) ( π ) α Δ.5 rev rd rev 9.8 rd s Δω 5. rd s (c) Δ t α 9.8 rd s.68 s

P. () I mr j j j y (m) 4 In this cse,. kg. kg r r r r 4 r. m +. m. m [ ] I. m. +. +. + 4. kg 4 kg m x (m) 4 kg m 6. rd s (b) K Iω ( ).57 J *P. m 4. kg, r y. m m. kg, r y. m m. kg, r y 4. m ω. rd s bout the x-xis. kg 4. kg FIG. P. () I m r + m r + m r I x x 4.. +.. +. 4. 9. kg m K Ixω ( 9. )(. ) 84 J FIG. P. (b) v rω.. 6. m s K mv 4. 6. 7. J v rω.(.) 4. m s K mv. 4. 6. J v rω 4.(.) 8. m s K mv. 8. 96. J K K + K + K 7. + 6. + 96. 84 J I ω (c) The kinetic energies comuted in rts () nd (b) re the sme. ottionl kinetic energy cn be viewed s the totl trnsltionl kinetic energy o the rticles in the rotting object. x

P. I Mx + m( L x) x di Mx m( L x) (or n extremum) dx ml x M + m di m+ M ; thereore I is t minimum when the xis dx ml o rottion sses through x which is lso the M + m center o mss o the system. The moment o inerti bout n xis ssing through x is M x L L x m CM ml m M m I M m L L M m + M m + + M + m where Mm μ M + m μl FIG. P. P.6 We ssume the rods re thin, with rdius much less thn L. Cll the junction o the rods the origin o coordintes, nd the xis o rottion the z-xis. For the rod long the y-xis, I ml rom the tble. For the rod rllel to the z-xis, the rllel-xis theorem gives L I mr m + ml 4 z y x xis o rottion FIG. P.6 m In the rod long the x-xis, the bit o mteril between x nd x + dx hs mss dx L L nd is t distnce r x + is: rom the xis o rottion. The totl rottionl inerti L L m Itotl ml + ml + x + dx 4 4 L L L L 7 m x ml ml + + x L 4 L L 7 ml ml ml 4 ml + + Note: The moment o inerti o the rod long the x xis cn lso be clculted rom the rllel-xis theorem s L ml m +.

P.7 Tret the tire s consisting o three rts. The two sidewlls re ech treted s hollow cylinder o inner rdius 6.5 cm, outer rdius.5 cm, nd height.65 cm. The tred region is treted s hollow cylinder o inner rdius.5 cm, outer rdius. cm, nd height. cm. Use I m( + ) or the moment o inerti o hollow cylinder. Sidewll: m π (.5 m) (.65 m) ( 6.5 m )(. kg m ).44 kg Iside (.44 kg ) (.65 m ) (.5 m ) 8.68 + kg m Tred: m π (. m ) (.5 m ) (. m )(. kg m ). kg I tred (. kg ) (. m ) + (.5 m ). kg m Entire Tire: I I + I 8.68 kg m +. kg m.8 kg m totl side tred P. We consider the cm s the suerosition o the originl solid disk nd disk o negtive mss cut rom it. With hl the rdius, the cut-wy rt hs one-qurter the ce re nd one-qurter the volume nd one-qurter the mss M o the originl solid cylinder: M 4 M M M M 4 By the rllel-xis theorem, the originl cylinder hd moment o inerti CM + + I M M M M 4 4 The negtive-mss ortion hs M M I 4. The whole cm hs M 4 I M M M M 4 4 ω ω ω 4 48 K I M M nd τ. m. N.5 m 9. N.5 m. N.55 N m P. The thirty-degree ngle is unnecessry inormtion. FIG. P.

P.7 For m, Fy my: + n m g n mg 9.6 N k μkn 7.6 N Fx mx : 7.6 N + T (. kg) () For the ulley, τ Iα : T + T M T+ T (. kg ) T+ T ( 5. kg) For m, + n mgcosθ n 6. kg ( 9.8 m s )( cos. ) 5.9 N FIG. P.7 k μkn 8. N : 8. N T + msin θ m 8. N T + 9.4 N 6. kg () () Add equtions (), (), nd (): (b) () 7.6 N 8. N + 9.4 N. kg 4. N.9 m s. kg T. kg.9 m s + 7.6 N 7.67 N T 7.67 N + 5. kg.9 m s 9. N kg.5 m.5 kg m ωi 5. rev min 5.4 rd s ω ωi 5.4 rd s α.87 rd s t 6. s P.8 I m τ Iα.5 kg m.87 rd s.9 N m The mgnitude o the torque is given by the orce o riction..9 N m, where is FIG. P.8 Thereore,.9 N m nd μkn.5 m yields.8 N μ k n 7. N.

trns. kg. m s 5 J v Krot Iω mr. kg. m s 5 J r 4 P.5 () K mv (b) (c) Ktotl Ktrns + Krot 75 J P.56 I v K mv + Iω m+ v where ω since no sliing occurs. Also, U mgh, U, nd v Thereore, Thus, For disk, So i I m v m + gh gh v + Im I m gh v or disk + gh i v For ring, I m so v or vring Since v > v, the disk reches the bottom irst. disk ring 4gh gh *P.6 () We consider the elevtor-sheve-counterweight-erth system, including n ssengers, s n isolted system nd ly the conservtion o mechnicl energy. We tke the initil conigurtion, t the moment the drive mechnism switches o, s reresenting zero grvittionl otentil energy o the system. Thereore, the initil mechnicl energy o the system is E i K i + U i (/) m e v + (/) m c v + (/)I s ω (/) m e v + (/) m c v + (/)[(/)m s r ](v/r) (/) [m e + m c v + (/)m s ] v The inl mechnicl energy o the system is entirely grvittionl becuse the system is momentrily t rest: E K + U + m e gd m c gd where we hve recognized tht the elevtor cr goes u by the sme distnce d tht the counter- weight goes down. Setting the initil nd inl energies o the system equl to ech other, we hve (/) [m e + m c + (/)m s ] v (m e m c ) gd (/) [8 kg + n 8 kg + 95 kg + 4 kg]( m/s) (8 kg + n 8 kg 95 kg)(9.8

m/s ) d d [89 + 8n](.459 m)/(8n 5) (b) d [89 + 8 ](.459 m)/( 8 5) 94. m (c) d [89 + 8 ](.459 m)/( 8 5).6 m (d) d [89 + 8 ](.459 m)/( 8 5) 5.79 m (e) The rising cr will cost to sto only or n. For n or n, the cr would ccelerte uwrd i relesed. () The grh looks roughly like one brnch o hyerbol. It comes down steely rom 94. m or n, lttens out, nd very slowly roches.459 m s n becomes lrge. (g) The rdius o the sheve is not necessry. It divides out in the exression (/)Iω (/4)m sheve v. (h) In this roblem, s oten in everydy lie, energy conservtion reers to minimizing use o electric energy or uel. In hysicl theory, energy conservtion reers to the constncy o the totl energy o n isolted system, without regrd to the dierent rices o energy in dierent orms. (i) The result o lying F m nd τ Iα to elevtor cr, counterweight, nd sheve, nd dding u the resulting equtions is (8 kg + n 8 kg 95 kg)(9.8 m/s ) [8 kg + n 8 kg + 95 kg + 4 kg] (9.8 m/s )(8n 5)/( 89 + 8n) downwrd P.69 τ will oose the torque due to the hnging object: τ I α T τ : τ T I α () Now ind T, I nd α in given or known terms nd substitute into eqution (). F T mg m y : T m( g ) () t y lso Δ y vt i + () t nd α y t (4) FIG. P.69 8 5 I M + M Substituting (), (), (4), nd (5) into (), we ind (5)

τ ( y) y 5 M y 5 My m g m g t 8 t t 4 t P.75 () Let E reresent the rdius o the Erth. The bse o the building moves est t v ω E where ω is one revolution er dy. The to o the building moves est t v ω ( ) +h. Its estwrd seed reltive to the ground is E h v v ω h. The object s time o ll is given by Δ y + gt, t. g During its ll the object s estwrd motion is unimeded so its delection distnce is h g g Δ x v v t ωh ωh π rd s 5 m.6 cm 86 4 s 9.8 m (b) (c) The delection is only.% o the originl height, so it is negligible in mny rcticl cses. P.77 F T Mg M: τ T Iα M () Combining the bove two equtions we ind nd thus T M( g ) T T M Mg FIG. P.77 (b) T Mg g M M + v + g ( h ) (c) v vi ( x xi) v 4gh For comrison, rom conservtion o energy or the system o the disk nd the Erth we hve

U + K + K U + K + K : gi rot i trns i g rot trns v Mgh+ + + M + Mv v 4gh P.79 () Δ Krot +Δ Ktrns +Δ U m r Note tht initilly the center o mss o the shere is distnce h+ r bove the bottom o the loo; nd s the mss reches the to o the loo, this distnce bove the reerence level is r. The conservtion o energy requirement gives h P mg( h+ r ) mg ( r ) + mv + Iω FIG. P.79 For the shere I 5 mr nd v rω so tht the exression becomes 7 gh gr g v + + () Note tht h h min the condition when the seed o the shere t the to o the loo stisies mv F mg or v g( r) ( r) Substituting this into Eqution () gives ( ) + ( r ) or hmin.7( r).7 hmin r.7 (b) When the shere is initilly t h nd inlly t oint P, the conservtion o energy eqution gives mg( + r ) mg+ mv + mv 5, or v + r g 7 Turning clockwise s it rolls without sliing st oint P, the shere is slowing down with counterclockwise ngulr ccelertion cused by the

torque o n uwrd orce o sttic riction. We hve F y my nd τ Iα becoming mg mα r nd r mr α. 5 5g Eliminting by substitution yields α so tht 7r 5 Fy mg 7 mv / 7 ( + r) mg Fx n mg (since >> r ) r r 7 P.8 () Fx F+ MCM τ F Iα I CM F M F CM CM 4F M F Mg n FIG. P.8 (b) 4F MCM F M F F M (c) v vi + ( x xi) v 8Fd M P.84 Cll the rictionl orce exerted by ech roller t bckwrd on the lnk. Nme s the rolling resistnce exerted bckwrd by the ground on ech roller. Suose the rollers re eqully r rom the ends o the lnk. b M m m F For the lnk, FIG. P.84 Fx mx 6. N t ( 6. kg) The center o ech roller moves orwrd only hl s r s the lnk. Ech roller hs ccelertion nd ngulr ccelertion ( 5. cm ) (. m ) Then or ech, Fx mx + t b. kg

τ Iα 5. cm 5. cm (. kg)( 5. cm ) t + b. cm So t + b kg Add to eliminte b : t (.5 kg) () And 6. N (.5 kg) ( 6. kg) ( 6. N ) ( 7.5 kg).8 m s For ech roller,.4 m s.5 kg.8 m s (b) Substituting bck, t Mg t.6 N 6. N.6 N + b kg.8 m s. N b t n t t n t n t t n t t The negtive sign mens tht the horizontl orce o ground on ech roller is. N orwrd rther thn bckwrd s we ssumed. mg mg b n b b n b FIG. P.84(b) P.85 Fx mx reds + T m. I we tke torques round the center o mss, we cn use τ Iα, which reds + T Iα. For rolling without sliing, α. By substitution, I I T T m m T m IT I ( + ) ( + ) I m T I m mg n FIG. P.85 T I + m T I + m Since the nswer is ositive, the riction orce is conirmed to be to the let.