Chemistry 102 Organic Chemistry: Introduction to Isomers Workshop

Similar documents
Lecture 4: 12.4 Isomerism

PRESENTATION ISOMERISM. Dr. Susmita Bajpai

It is possible for organic molecules with the same molecular formula to have different structures

INTRODUCTION TO ORGANIC CHEMISTRY. Section A

Experiment 8 Optical Isomers. In this experiment you will be given the opportunity to see the 3-dimensional aspects of

H 3 C. staggered H 2 C

02/07/2017. Isomerism. Structural isomerism. 1. Structural isomerism different linkages of atoms. Same molecular formula Different structural formulae

Stereochemistry Structural or constitutional isomers... have the same molecular formula but different connectivity (skeletal, positional, functional)

Work hard. Be nice. Name: Period: Date:

Isomerism in Alkanes, Haloalkanes, and Alkenes using Molecular Models

Class Revision on Intro to Organic, Alkanes and Alkenes

Introduction to Organic Chemistry. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Organic and Biochemical Molecules. 1. Compounds composed of carbon and hydrogen are called hydrocarbons.

Chapter 25 Organic and Biological Chemistry

Fondamenti di Chimica & Educazione Ambientale Lecture 3

CH 3. Section Resources

Isomerism. Introduction

OPTICAL ISOMERISM UNIT-1

Pentane (C5H12) exists in three form

BIO 311C Spring 2010

CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 OH

Kota Academy Karad Chemistry - Isomerism

Basic Organic Nomenclature Packet Chemistry Level II

Carbon and. Molecular Diversity. Organic Molecules. The Carbon Atom. Carbon s Compatibility. Variations in Carbon Skeletons 10/13/2015

Unit 5: Organic Chemistry

Organic: module 4 revision guide. Basic definitions to know. Drawing Displayed formulae

CH 3 C 2 H 5. Tetrahedral Stereochemistry

Chapter 5 Stereochemistry. Stereoisomers

1) Which type of compound does not contain a carbonyl group? A) ketone B) aldehyde C) amine D) ester E) carboxylic acid

Organic Chemistry. A. Introduction

Common Elements in Organic Compounds

Lesson 4. Molecular Geometry and Isomers II. Lesson 4 CH 3 HO H OH

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Three-Dimensional Structures of Drugs

Suggested answers to in-text activities and unit-end exercises Topic 8 Unit 30

Carbon and Molecular Diversity - 1

Chapter 4: Carbon and the Molecular Diversity of Life. 1. Organic Molecules 2. Chemical Groups

1. Organic Molecules. Elements in Biological Molecules 2/13/2016. Chapter 4: Carbon and the Molecular Diversity of Life

Unit 12 Organic Chemistry

a. Does the model have a plane of symmetry? Yes No The central carbon is said to be a stereocenter, stereogenic center, or chiral carbon.

3.7 Organic naming and Isomerism continued

Carbonyl Group in Aldehydes and Ketones

Name: Unit 11 Organic Chemistry

Due Date: 2) What is the relationship between the following compounds?

Assigning Stereochemistry I What is stereochemistry?

Organic Chemistry. Unit 10

Chapter 24 From Petroleum to Pharmaceuticals

Unit 9. Organic compounds

ISOMERISM - A general survey

240 Chem. Stereochemistry. Chapter 5

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry

A. They all have a benzene ring structure in the molecule. B. They all have the same molecular formula. C. They all have carbon and hydrogen only

Chem 1075 Chapter 19 Organic Chemistry Lecture Outline

CPT-26 ANSWERS 73. (1) 145. (4) 2. (1) 74. (3) 146. (4) 3. (3) 75. (2) 147. (3) 4. (2) 5. (4) 76. (4) 77. (2) 148. (2) 149. (3) 6. (3) 78.

3.8 Aldehydes and ketones

ORGANIC MOLECULES (LIVE) 10 APRIL 2015 Section A: Summary Notes and Examples Naming and Functional Groups

PSI Chemistry. 3) How many electron pairs does carbon share in order to complete its valence shell? A) 1 B) 2 C) 3 D) 4 E) 8

AP Chemistry Chapter 22 - Organic and Biological Molecules

4 Carbon and the Molecular Diversity of Life

GOODLUCK TUITION CENTER FOR CHEMISTRY. 655 A 48TH STREET 9 TH SECTOR CHENNAI - 78 Ph: Cell : ISOMERISM

Chapter Organic Chemistry Basics

CHEM 112 Name: (Last) (First). Section No.: VISUALIZING ORGANIC REACTIONS THROUGH USE OF MOLECULAR MODELS

Worksheet Chapter 10: Organic chemistry glossary

Carbon and the Molecular Diversity of Life

3.1 Introduction to Organic Chemistry

Name: Unit 11 Organic Chemistry

CHAPTER 24 Organic Chemistry

ORGANIC CHEMISTRY. Classification of organic compounds

Organic Chemistry. Organic chemistry is the chemistry of compounds containing carbon.

Name Date Class HYDROCARBONS

For more info visit

STRUCTURE, ISOMERISM AND NOMENCLATURE OF ORGANIC COMPOUNDS

UNIT (8) OXYGEN CONTAINING ORGANIC COMPOUNDS

Structural Formula. Space-Filling Model (a) Methane

Alkanes and Cycloalkanes

Name. Optical Isomers

Organic Nomenclature

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHEM J-10 June The structure of ( )-linalool, a commonly occurring natural product, is shown below.

9. Which compound is an alcohol? A) methanol C) butane B) ethyne D) propanal

Stereochemistry CHAPTER SUMMARY

10/4/2010. Sequence Rules for Specifying Configuration. Sequence Rules for Specifying Configuration. 5.5 Sequence Rules for Specifying.

Optical Isomerism. Types of isomerism. chemrevise.org 20/08/2013. N Goalby Chemrevise.org. Isomerism. Structural isomerism.

CHAPTER 5. Stereoisomers

Molecular Models and Isomerism

3. Organic Compounds: Alkanes and Cycloalkanes

Chapter 5 Stereochemistry

C 4 H 10 O. butanol. diethyl ether. different carbon skeleton different functional group different position of FG

Organic Chemistry is the chemistry of compounds containing.

9. Stereochemistry: Introduction to Using Molecular Models

Chemistry 11 Hydrocarbon Alkane Notes. In this unit, we will be primarily focusing on the chemistry of carbon compounds, also known as.

CHEMISTRY 150. April 2012

Assign (R) or (S) configurations to the chiral carbons in the following molecules: enantiomers

BRCC CHM 102 Class Notes Chapter 11 Page 1 of 9

Exp 08: Organic Molecules

4.1.1 Organic: Basic Concepts

Chapter 22. Organic and Biological Molecules

Unit 7 Part 1 Introduction to Organic Chemistry Nomenclature and Isomerism in Simple Organic Compounds UNIT 7 INTRODUCTION TO ORGANIC CHEMISTRY

Topic 10.1: Fundamentals of Organic Chemistry Notes

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) Atom (usually carbon) to which 4 different groups are attached: W Z C X Y

Transcription:

Chemistry 102 Organic Chemistry: Introduction to Isomers Workshop What are isomers? Isomers are molecules with the same molecular formula, but different arrangements of atoms. There are different types of isomers, shown by the diagram on the right. Structural isomers are widely called conformational isomers. The latter term is preferred in the IUPAC system of nomenclature. Structural Isomerism Structural isomerism occurs when two or more organic compounds have the same molecular formulae, but different structures. These differences tend to give the molecules different chemical and physical properties. There are three types of structural isomerism that you need to be aware of: chain isomerism, positional isomerism and functional isomerism. There is a fourth type, known as tautomerism (where there are two isomers are known as the keto and enol isomers) that will not be introduced here. Chain Isomerism Chain isomerism occurs when the way carbon atoms are linked together is different from compound to compound. It is also called nuclear isomerism. There are three chain isomers of C5H12 shown below. Note that these isomers have the same empirical formula as pentane, but different conformations.

pentane 2-methylbutane 2,2-dimethylpropane Positional Isomerism Positional isomerism, another type of structural isomerism, occurs when functional groups are in different positions on the same carbon chain. Positional isomers of alcohols, alkenes, and aromatics are common. Below are models of the positional isomers of butanol, butene and methylphenol: 1-butanol 2-butanol 1-butene 2-butene Note: this is cis-2-butene, which has a geometric isomer called trans-2- butene 2-methylphenol 3-methylphenol 4-methylphenol

Functional Isomerism Functional isomerism, another kind of structural isomerism, occurs when substances have the same molecular formula but different functional groups. This means that functional isomers belong to different homologous series. There are two functional group isomers of which you need to be aware: alcohols and ethers aldehydes and ketones Below are models of the functional isomers ethanol and methoxymethane, and propanal and propanone. ethanol methoxymethane C 2H 6O Alcohols have the hydroxyl group, OH. Ethers have the functional group R O R'. propanal propanone (acetone) C 3H 6O Aldehydes and ketones both have the carbonyl group C=O. In ketones this is attached to two carbon atoms; in aldehydes it is attached to 1 or 2 hydrogen atoms. Stereo-isomerism Stereo-isomerism occurs when the atoms in a molecule can have different arrangements in space. There are two types of stereo-isomerism: geometrical isomerism and optical isomerism. Geometrical isomers can have very different physical properties, such as different melting points, but they tend to have the same chemical properties. Optical isomers have the same chemical and physical properties, except that one structure rotates the plane of polarized light to the right and the other rotates it to the left. Geometric Isomerism Geometric isomerism occurs when substances have the same molecular formula, but a different arrangement of their atoms in space. There are three ways that this can happen: where there is a C=C bond in the molecule; where a molecule has rings; or

where there is a >C=N bond. An interesting example of geometric isomerism caused by rings is found in sugars such as glucose, fructose, mannose and galactose. Below are models of the geometric isomers of 1- butene and 2-butene. 1-Butene does not form geometric isomers, even though it has a C=C bond, because one of the double-bonded carbon atoms has two identical groups on it (hydrogen atoms in this case). 2-Butene does form geometric isomers because each double-bonded carbon atom has two different groups on it. The cis- and trans- prefixes are used to differentiate the positions of the functional groups. cis-1-butene trans-2-butene Where like groups are on the same side of the double bond, we call it a cis isomer; where they are on opposite sides we call it a trans isomer. 1-butene Although 1-butene contains a C=C bond, it does not form geometrical isomers. Take care - look for different groups on the double-bonded carbon atoms! Optical Isomerism Optical isomerism occurs when substances have the same molecular and structural formulae, but one cannot be superimposed on the other. Put simply, they are mirror images of each other (see the diagram on the right). No matter how hard you try, the molecule on the left will not turn into the molecule on the right unless you break and make some bonds! Molecules like this are said to be chiral (pronounced ky-ral), and the different forms are called enantiomers. Optical isomers can occur when there is an asymmetric carbon atom. An asymmetric carbon atom is one which is bonded to four different groups. The groups can be something hideously complex, or something comfortably simple like a hydrogen or chlorine atom. Remember:

there must be four groups, and they must be different. Optical isomers can rotate the plane of polarization of plane-polarized light: one enantiomer rotates the polarized light clockwise (to the right) and is the (+) enantiomer; the other rotates the polarized light anticlockwise (to the left) and is called the ( ) enantiomer. A mixture containing equal concentrations of the (+) and ( ) enantiomers is not optically active (it will not rotate the plane of polarization). It is called a racemic mixture or racemate. Below are models of the optical isomers of 2-hydroxypropanoic acid (lactic acid). Lactic acid is a fairly common and simple example of optical isomerism. The (+) enantiomer of lactic acid is found in muscle. Sour milk contains a racemic mixture of the two enantiomers. (+)-lactic acid ( )-lactic acid The dashed lines show bonds going into the screen; the wedges show bonds coming out of the screen. Below is 2,3-dihydroxypropanal (glyceraldehyde). Glyceraldehyde is used as a standard by which other chiral molecules are compared. There are two enantiomers of glyceraldehyde, depending on the position of the OH (hydroxyl) group on the molecule. These are known as D-glyceraldehyde and L-glyceraldehyde. The little capital letters D and L are deliberate. The positions of the hydroxyl groups on other chiral molecules can be compared with glyceraldehyde to see if they are the D-enantiomer or the L-enantiomer. This is very common in biochemistry. For example, natural sugars are D-enantiomers and amino acids are L- enantiomers. However, knowing whether a molecule is the D or L-enantiomer does not tell us whether it is the (+) or ( ) enantiomer so be careful! D-glyceraldehyde L-glyceraldehyde Remember these are reference molecules; the D and L signs do not tell you if the enantiomer is (+) or ( ).

Exercises: 1. Draw 2-methylpentane. Make a molecular model of 2-methylpentane and convince yourself that 4-methylpentane is the same molecule. 2. Draw all the structural (chain) isomers of C6H14. How many are there? Verify that they are all different using molecular models. Name the isomers. 3. Draw and name all the positional isomers of propanol. The symmetrical isomer is commonly called isopropanol or rubbing alcohol. 4. Draw the functional isomers of C3H8O and C4H8O. Verify that they are all different using molecular models. Name the isomers. 5. Draw and name the cis- and trans- isomers of a) dibromoethene and b) 1-chloro- 1-propene. Compare molecular models of each pair of isomers. 6. Compare pairs of molecular models of the + and forms of lactic acid. Convince yourself that these molecules cannot be superimposed: that they are mirror images of each other. Do the same for the D- and L- forms of galactose. Draw 2-chloro-3- methylbutane and 2-chloro-2-methylbutane. Which of these molecules has an optical isomer? Draw it.