Logic effort and gate sizing

Similar documents
Lecture 7: Multistage Logic Networks. Best Number of Stages

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort

Introduction to CMOS VLSI Design. Lecture 5: Logical Effort. David Harris. Harvey Mudd College Spring Outline

EE 447 VLSI Design. Lecture 5: Logical Effort

Lecture 6: Logical Effort

ECE429 Introduction to VLSI Design

Introduction to CMOS VLSI Design. Logical Effort B. Original Lecture by Jay Brockman. University of Notre Dame Fall 2008

VLSI Design, Fall Logical Effort. Jacob Abraham

Logical Effort. Sizing Transistors for Speed. Estimating Delays

Lecture 8: Combinational Circuit Design

Logical Effort: Designing for Speed on the Back of an Envelope David Harris Harvey Mudd College Claremont, CA

( ) = ( ) + ( 0) ) ( )

Logical Effort of Higher Valency Adders

Lecture 8: Logic Effort and Combinational Circuit Design

Very Large Scale Integration (VLSI)

1.4 Small-signal models of BJT

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Energy-Delay Space Exploration of Clocked Storage Elements Using Circuit Sizing

NUMERICAL DIFFERENTIATION

VLSI Design I; A. Milenkovic 1

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3.

Lecture 21: Numerical methods for pricing American type derivatives

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Optimization Methods for Engineering Design. Logic-Based. John Hooker. Turkish Operational Research Society. Carnegie Mellon University

A REVIEW OF ERROR ANALYSIS

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

EEE 241: Linear Systems

Interconnect Optimization for Deep-Submicron and Giga-Hertz ICs

Lecture 12: Classification

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Lecture 10 Support Vector Machines II

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Using the estimated penetrances to determine the range of the underlying genetic model in casecontrol

ME 501A Seminar in Engineering Analysis Page 1

T E C O L O T E R E S E A R C H, I N C.

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11:

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

Analysis of the Magnetomotive Force of a Three-Phase Winding with Concentrated Coils and Different Symmetry Features

AS-Level Maths: Statistics 1 for Edexcel

The Fundamental Theorem of Algebra. Objective To use the Fundamental Theorem of Algebra to solve polynomial equations with complex solutions

Chapter - 2. Distribution System Power Flow Analysis

Polynomial Regression Models

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems )

VQ widely used in coding speech, image, and video

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

DUE: WEDS FEB 21ST 2018

Measurement and Uncertainties

Calculation of time complexity (3%)

How Strong Are Weak Patents? Joseph Farrell and Carl Shapiro. Supplementary Material Licensing Probabilistic Patents to Cournot Oligopolists *

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

KIRCHHOFF CURRENT LAW

Basic Statistical Analysis and Yield Calculations

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

Generalized Linear Methods

55:041 Electronic Circuits

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Numerical Methods Solution of Nonlinear Equations

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

e i is a random error

Uncertainty in measurements of power and energy on power networks

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp.

Lecture 4: Adders. Computer Systems Laboratory Stanford University

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

So far: simple (planar) geometries

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. . For P such independent random variables (aka degrees of freedom): 1 =

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan

Numerical Heat and Mass Transfer

Queueing Networks II Network Performance

Generative classification models

Composite Hypotheses testing

Introduction to information theory and data compression

Solutions to Homework 7, Mathematics 1. 1 x. (arccos x) (arccos x) 1

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

Statistical Evaluation of WATFLOOD

Problem Set 9 Solutions

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

EE141. Administrative Stuff

Limited Dependent Variables and Panel Data. Tibor Hanappi

55:041 Electronic Circuits

Pattern Classification

Flyback Converter in DCM

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

A Simple Inventory System

Lecture 20: Hypothesis testing

Copyright 2004 by Oxford University Press, Inc.

Transcription:

EEN454 Dgtal Integrated rcut Desgn Logc effort and gate szng EEN 454 Introducton hp desgners face a bewlderng arra of choces What s the best crcut topolog for a functon? How man stages of logc gve least dela? How wde should the transstors be? Logcal effort s a method to make these decsons Uses a smple model of dela Allows back-of-the-envelope calculatons Helps make rapd comparsons between alternatves t Emphaszes remarkable smmetres??? EEN 454 7.2

Dela n a Logc Gate Epress delas n process-ndependent unt d = d abs τ τ = 3R 2 ps n 80 nm process 40 ps n 0.6 μm process 2 R A 2 Y 2 R 2 Y 2 R 2 2 τ= Inverter FO effort dela (due to load) τ= Inverter parastc dela (due to ts own parastc) EEN 454 7.3 Dela n a Logc Gate Epress delas n process-ndependent unt dabs d = τ Dela has two components d = f + p EEN 454 7.4 2

Dela n a Logc Gate Epress delas n process-ndependent unt d = d abs τ Dela has two components d = f + p Effort dela f = gh (a.k.a. stage effort) Agan has two components EEN 454 7.5 Dela n a Logc Gate Epress delas n process-ndependent unt d abs d = τ Dela has two components d = f + p Effort dela f = gh (a.k.a. stage effort) Agan has two components g: logcal effort Measures relatve ablt of gate to delver current g for nverter EEN 454 7.6 3

Dela n a Logc Gate Epress delas n process-ndependent unt d = d abs τ Dela has two components d = f + p Effort dela f = gh (a.k.a. stage effort) Agan has two components h: electrcal effort = out / n Rato of output to nput capactance Sometmes called fanout EEN 454 7.7 Dela n a Logc Gate Epress delas n process-ndependent unt d = d abs τ Dela has two components d = f + p Parastc dela p Represents dela of gate drvng no load Set b nternal parastc capactance EEN 454 7.8 4

Dela Plots d = f + p = gh + p Normalzed Dela: d 6 5 4 3 2 2-nput NAND g = p = d = Inverter g = p = d = 0 0 2 3 4 5 Electrcal Effort: h = out / n EEN 454 7.9 Dela Plots d = f + p = gh + p What about NOR2? Normalzed Dela: d 6 5 4 3 2 2-nput NAND Inverter g = 4/3 p = 2 d = (4/3)h + 2 g = p = d = h + Effort Dela: f 0 Parastc Dela: p 0 2 3 4 5 Electrcal Effort: h = out / n EEN 454 7.0 5

omputng Logcal Effort DEF: Logcal effort s the rato of the nput capactance of a gate to the nput capactance of an nverter delverng the same output current. Measure from dela vs. fanout plots Or estmate b countng transstor wdths Addtonal assumptons: Matched pull-up/pull-down currents/effectve resstances A 2 Y A B 2 2 A 4 Y 2 B 4 2 Y n = 3 g = 3/3 n = 4 g = 4/3 n = 5 g = 5/3 EEN 454 7. f = gh? Effort Dela: How Does It Work f abs = R eff out = R eff n ( out / n ) = R eff n h = R eff ( ( n / n,nv ) n,nv ) h = gh n,nv R eff = gh ( n,nv R n,nv )(R eff /R n,nv ) = gh ( n,nv R n,nv ).0 3R = Tau f = gh EEN 454 7.2 6

atalog of Gates Logcal effort of common gates Gate tpe Number of nputs 2 3 4 n Inverter NAND 4/3 5/3 6/3 (n+2)/3 NOR 5/3 7/3 9/3 (2n+)/3 Trstate / mu 2 2 2 2 2 XOR, XNOR 4, 4 6, 2, 6 8, 6, 6, 8 EEN 454 7.3 atalog of Gates Parastc dela of common gates In multples of p nv ( ) Internal node parastcs neglected when computng parastc delas Gate tpe Number of nputs 2 3 4 n Inverter NAND 2 3 4 n NOR 2 3 4 n Trstate / mu 2 4 6 8 2n XOR, XNOR 4 6 8 EEN 454 7.4 7

Eample: Rng Oscllator Estmate the frequenc of an N-stage rng oscllator Logcal Effort: g = Electrcal Effort: h = Parastc Dela: p = Stage Dela: d = Frequenc: f osc = EEN 454 7.5 Eample: Rng Oscllator Estmate the frequenc of an N-stage rng oscllator Logcal Effort: g = Electrcal Effort: h = Parastc Dela: p = q Stage Dela: d = 2 Frequenc: f osc = /(2*N*d) = /4N 3 stage rng oscllator n 0.6 μm process has frequenc of ~ 200 MHz EEN 454 7.6 8

Eample: FO4 Inverter Estmate the dela of a fanout-of-4 (FO4) nverter d Logcal Effort: g = Electrcal Effort: h = Parastc Dela: p = Stage Dela: d = EEN 454 7.7 Eample: FO4 Inverter Estmate the dela of a fanout-of-4 (FO4) nverter d Logcal Effort: g = Electrcal Effort: h = 4 Parastc Dela: p = The FO4 dela s about Stage Dela: d = 5 200 ps n 0.6 μm process 60 ps n a 80 nm process f/3 ns n an f μm process EEN 454 7.8 9

Multstage Logc Networks Logcal effort generalzes to multstage networks Path Logcal Effort Path Electrcal Effort Path Effort G = g H = out-path n-path F = f = gh 0 g = h = /0 g 2 = 5/3 h 2 = / g 3 = 4/3 h 3 = z/ z g 4 = h 4 = 20/z 20 EEN 454 7.9 Multstage Logc Networks Logcal effort generalzes to multstage networks Path Logcal Effort Path Electrcal Effort Path Effort an we wrte F = GH? G = g H = out path n path F = f = gh EEN 454 7.20 0

Paths that Branch No! onsder paths that branch: (Sze of each gate s characterzed b ts nput pn capactance) G = H = GH = h = h 2 = 5 5 5 90 90 F = GH? EEN 454 7.2 Paths that Branch No! onsder paths that branch: (Sze of each gate s characterzed b ts nput pn capactance) G = H = 90 / 5 = 8 GH = 8 h = (5 +5) / 5 = 6 h 2 = 90 / 5 = 6 5 5 5 90 90 F = g g 2 h h 2 = 36 = 2GH EEN 454 7.22

Branchng Effort Introduce branchng effort Accounts for branchng between stages n path on path b = B= b + on path off path Now we compute the path effort F = GBH Note: h = BH EEN 454 7.23 Multstage Delas Path Effort Dela Path Parastc Dela Path Dela D F = f P= p D = d = D + P F EEN 454 7.24 2

Desgnng Fast rcuts D= d = D + P F Dela s smallest when each stage bears same effort fˆ = gh = F N Thus mnmum dela of N stage path s N D = NF + P Ths s a ke result of logcal effort Fnd fastest possble dela Doesn t requre calculatng gate szes EEN 454 7.25 Gate Szes How wde should the gates be for least dela? fˆ = gh= g = n out n g fˆ out Workng backward, appl capactance transformaton to fnd nput capactance of each gate gven load t drves. heck work b verfng nput cap spec s met. EEN 454 7.26 3

Eample: 3-stage path Select gate szes and for least dela from A to B A 8 45 B 45 EEN 454 7.27 Eample: 3-stage path A 8 45 B 45 Logcal Effort G = Electrcal Effort H = Branchng Effort B = Path Effort F = Best Stage Effort ˆf = Parastc Dela P = Dela D = EEN 454 7.28 4

Eample: 3-stage path A 8 45 B 45 Logcal Effort G = (4/3)*(5/3)*(5/3) = 00/27 Electrcal Effort H = 45/8 Branchng Effort B = 3 * 2 = 6 Path Effort F = GBH = 25 3 Best Stage Effort f ˆ = F = 5 Parastc Dela P = 2 + 3 + 2 = 7 Dela D = 3*5 + 7 = 22 = 4.4 FO4 EEN 454 7.29 Eample: 3-stage path Work backward for szes = = A 8 45 B 45 EEN 454 7.30 5

Eample: 3-stage path Work backward for szes = 45 * (5/3) / 5 = 5 = (5*2) * (5/3) / 5 = 0 45 A P: 4 N: 4 P: 4 N: 6 P: 2 N: 3 B 45 EEN 454 7.3 Best Number of Stages How man stages should a path use? Mnmzng number of stages s not alwas fastest Eample: drve 64-bt datapath wth unt nverter D = Intal Drver Datapath Load 64 64 64 64 N: f: D: 2 3 4 EEN 454 7.32 6

Best Number of Stages How man stages should a path use? Mnmzng number of stages s not alwas fastest Eample: drve 64-bt datapath wth unt nverter Intal Drver D = NF /N + P = N(64) /N + N 8 4 2.8 6 8 23 Datapath Load 64 64 64 64 N: f: D: 64 65 2 8 8 3 4 5 Fastest 4 2.8 5.3 EEN 454 7.33 Dervaton onsder addng nverters to end of path How man gve least dela? N = ( ) Defne best stage effort n D= NF + p + N n p nv D N N N = F ln F + F + pnv = 0 N ρ = F N ( ) p + ρ lnρ = 0 nv Logc Block: n Stages Path Effort F F N N - n Etra Inverters EEN 454 7.34 7

( ) p + ρ lnρ = 0 nv Best Stage Effort has no closed-form soluton Neglectng parastcs (p nv = 0), we fnd ρ = 2.78 (e) For p nv =, solve numercall for ρ = 3.59 EEN 454 7.35 Senstvt Analss How senstve s dela to usng eactl the best number of stages? D(N) /D(N).6.5.4 26.26.2.5.0 (ρ=6) (ρ =2.4) 0.0 05 0.5 07 0.7 0.0 4.4 20 2.0 N / N 2.4 < ρ < 6 gves dela wthn 5% of optmal We can be slopp! I lke ρ = 4 EEN 454 7.36 8

Eample Ben Btdddle s the memor desgner for the Motorol 68W86, an embedded automotve processor. Help Ben desgn the decoder for a regster fle. Decoder specfcatons: 6 word regster fle Each word s 32 bts wde Each bt presents load of 3 unt-szed transstors True and complementar address nputs A[3:0] Each nput ma drve 0 unt-szed transstors A[3:0] A[3:0] Ben needs to decde: 32 bts How man stages to use? How large should each gate be? 6 Regster Fle How fast can decoder operate? 4:6 Decoder 6 words EEN 454 7.37 Number of Stages Decoder effort s manl electrcal and branchng Electrcal Effort: H = Branchng Effort: B = If we neglect logcal effort (assume G = ) Path Effort: F = Number of Stages: N = EEN 454 7.38 9

Number of Stages Decoder effort s manl electrcal and branchng Electrcal Effort: H = (32*3) 3) / 0 = 9.6 Branchng Effort: B = 8 If we neglect logcal effort (assume G = ) Path Effort: F = GBH = 76.8 Number of Stages: N = log 4 F = 3. Tr a 3-stage desgn EEN 454 7.39 Gate Szes & Dela Logcal Effort: G = Path Effort: F = Stage Effort: f ˆf = Path Dela: Gate szes: D = z = = A[3] A[3] A[2] A[2] A[] A[] A[0] A[0] 0 0 0 0 0 0 0 0 z word[0] 96 unts of wordlne capactance z word[5] EEN 454 7.40 20

Gate Szes & Dela Logcal Effort: G = * 6/3 * = 2 Path Effort: F = GBH = 54 /3 Stage Effort: f ˆ = F = 536 5.36 Path Dela: D= 3 fˆ + + 4 + = 22. Gate szes: z = 96*/5.36 = 8 = 8*2/5.36 = 6.7 A[3] A[3] A[2] A[2] A[] A[] A[0] A[0] 0 0 0 0 0 0 0 0 z word[0] 96 unts of wordlne capactance z word[5] EEN 454 7.4 omparson ompare man alternatves wth a spreadsheet Desgn N G P D NAND4-INV 2 2 5 29.8 NAND2-NOR2 2 20/9 4 30. INV-NAND4-INV 3 2 6 22. NAND4-INV-INV-INV 4 2 7 2. NAND2-NOR2-INV-INV 4 20/9 6 20.5 NAND2-INV-NAND2-INV 4 6/9 6 9.7 INV-NAND2-INV-NAND2-INV 5 6/9 7 20.4 NAND2-INV-NAND2-INV-INV-INV 6 6/9 8 2.6 EEN 454 7.42 2

Revew of Defntons Term Stage Path number of stages N logcal effort g G = g out out-path electrcal effort h = H = n n-path on-path + off-path branchng effort b = B = b on-path effort f = gh F = GBH effort dela f D F = f parastc dela p P= p dela d = f + p D = d = DF + P EEN 454 7.43 Method of Logcal Effort ) ompute path effort 2) Estmate best number of stages 3) Sketch path wth N stages 4) Estmate least dela 5) Determne best stage effort 6) Fnd gate szes F = GBH N = log 4 F N D = NF + P ˆ N f = F g out n = fˆ EEN 454 7.44 22

Lmts of Logcal Effort hcken and egg problem Need path to compute G But don t know number of stages wthout G Smplstc dela model Neglects nput rse tme effects Interconnect Iteraton requred n desgns wth wre Mamum speed onl Not mnmum area/power for constraned dela EEN 454 7.45 Summar of Logcal Effort Logcal effort s useful for thnkng of dela n crcuts Numerc logcal effort characterzes gates NANDs are faster than NORs n MOS Paths are fastest when effort delas are ~4 Path dela s weakl senstve to stages, szes But usng fewer stages doesn t mean faster paths Dela of path s about log 4 F FO4 nverter delas Inverters and NAND2 best for drvng large caps Provdes language for dscussng fast crcuts But requres practce to master EEN 454 7.46 23

Specal ase: ascaded Inverters Smple elegant answer f neglectng parastc delas 2 3 k p: stage rato L sze + = p sze R + =R /p + = p EEN 454 7.47 Dela of ascaded Drvers Dela between stage and + R + = p R Total dela from stage to stage k pr + pr 2 2 + + pr k- k- + R k L = pr + pr + + pr + R L / p k- = (k-)pr +R /p k- L EEN 454 7.48 24

Mnmum Dela Stage Rato A = (k-) R, B = R L t = A p + B p -k Let dervatve t = 0 A + (-k) B p -k = 0 p k = (k-) B/A = L / p = [ L / ] /k EEN 454 7.49 Optmal Number of Stages L = p k k = ln( L / ) / ln p t = k p R = (ln ( L / ) / ln p) p R Dela t reaches mnmum when stage rato: p = e 2.78 EEN 454 7.50 25