A conic cutting surface method for linear-quadraticsemidefinite

Similar documents
Numerical Analysis Formulae Booklet

1 Lyapunov Stability Theory

Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

Support vector machines II

0/1 INTEGER PROGRAMMING AND SEMIDEFINTE PROGRAMMING

MATH 247/Winter Notes on the adjoint and on normal operators.

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Regression and the LMS Algorithm

Binary classification: Support Vector Machines

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD

L5 Polynomial / Spline Curves

CSE 5526: Introduction to Neural Networks Linear Regression

Multivariate Transformation of Variables and Maximum Likelihood Estimation

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

A COMPARATIVE STUDY OF THE METHODS OF SOLVING NON-LINEAR PROGRAMMING PROBLEM

Pinaki Mitra Dept. of CSE IIT Guwahati

1 0, x? x x. 1 Root finding. 1.1 Introduction. Solve[x^2-1 0,x] {{x -1},{x 1}} Plot[x^2-1,{x,-2,2}] 3

Lattices. Mathematical background

A new type of optimization method based on conjugate directions

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Lecture 07: Poles and Zeros

Unsupervised Learning and Other Neural Networks

COMPROMISE HYPERSPHERE FOR STOCHASTIC DOMINANCE MODEL

QR Factorization and Singular Value Decomposition COS 323

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

3. Basic Concepts: Consequences and Properties

Arithmetic Mean and Geometric Mean

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

G S Power Flow Solution

Ideal multigrades with trigonometric coefficients

Investigating Cellular Automata

( x) min. Nonlinear optimization problem without constraints NPP: then. Global minimum of the function f(x)

A Mean- maximum Deviation Portfolio Optimization Model

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK

arxiv: v1 [cs.lg] 22 Feb 2015

Q-analogue of a Linear Transformation Preserving Log-concavity

Exercises for Square-Congruence Modulo n ver 11

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods

Chapter 9 Jordan Block Matrices

Point Estimation: definition of estimators

A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming

DKA method for single variable holomorphic functions

Generalized Convex Functions on Fractal Sets and Two Related Inequalities

Lyapunov Stability. Aleksandr Mikhailovich Lyapunov [1] 1 Autonomous Systems. R into Nonlinear Systems in Mechanical Engineering Lesson 5

Computational Geometry

An Introduction to. Support Vector Machine

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions

MOLECULAR VIBRATIONS

Some Different Perspectives on Linear Least Squares

On Modified Interval Symmetric Single-Step Procedure ISS2-5D for the Simultaneous Inclusion of Polynomial Zeros

ALGORITHMS FOR OPTIMAL DECISIONS 2. PRIMAL-DUAL INTERIOR POINT LP ALGORITHMS 3. QUADRATIC PROGRAMMING ALGORITHMS & PORTFOLIO OPTIMISATION

Jacobian-Free Diagonal Newton s Method for Solving Nonlinear Systems with Singular Jacobian ABSTRACT INTRODUCTION

7.0 Equality Contraints: Lagrange Multipliers

Barycentric Interpolators for Continuous. Space & Time Reinforcement Learning. Robotics Institute, Carnegie Mellon University

Matrix Algebra Tutorial With Examples in Matlab

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Algorithms Theory, Solution for Assignment 2

A Semismooth Inexact Newton-type Method for the Solution of Optimal Power Flow Problem

Non-uniform Turán-type problems

CHAPTER 4 RADICAL EXPRESSIONS

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

STK4011 and STK9011 Autumn 2016

A Min-Max Algorithm for Solving the Linear Complementarity Problem

Beam Warming Second-Order Upwind Method

BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS. Aysegul Akyuz Dascioglu and Nese Isler

Solving Interval and Fuzzy Multi Objective. Linear Programming Problem. by Necessarily Efficiency Points

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

Lecture 5: Interpolation. Polynomial interpolation Rational approximation

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Lebesgue Measure of Generalized Cantor Set

Runtime analysis RLS on OneMax. Heuristic Optimization

ON THE ELEMENTARY SYMMETRIC FUNCTIONS OF A SUM OF MATRICES

6.867 Machine Learning

Machine Learning. knowledge acquisition skill refinement. Relation between machine learning and data mining. P. Berka, /18

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I

1 Convergence of the Arnoldi method for eigenvalue problems

Journal of Mathematical Analysis and Applications

X ε ) = 0, or equivalently, lim

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

n -dimensional vectors follow naturally from the one

Supervised learning: Linear regression Logistic regression

On the Convexity of the System Loss Function

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices.

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

PTAS for Bin-Packing

Global solution of optimization problems with signomial parts

Solution of General Dual Fuzzy Linear Systems. Using ABS Algorithm

A Remark on the Uniform Convergence of Some Sequences of Functions

Aitken delta-squared generalized Juncgk-type iterative procedure

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Transcription:

A coc cuttg surface method for lear-quadratcsemdefte programmg Mohammad R. Osoorouch Calfora State Uversty Sa Marcos Sa Marcos, CA Jot wor wth Joh E. Mtchell RPI July 3, 2008

Outle: Secod-order coe: defto ad propertes Hstory ad recet wors Secod-order coe cuttg surface method Optmalty codtos he updatg drecto: lear cut he updatg drecto: multple SOCC Complety results Lear-quadratc-semdefte programmg Computatoal eperece

Secod-order coe: : ( 0; ), 0 s a closed cove coe : 0 Notatos: y ff y y ff y

Some fuctos ( ; ), s ( s ; s ) 0 0 : ( ; ), 0 0 0 0 ad are egevalues of 1 0 2 0 0, 0, 1 2 s ( s; s s ) If ad the s vertable ad 1 e : (1; 0) tr( ) : 2 2 1 2 0 det( ) : F : 2 1 2 0 2 2 1 2 : ma, 1 2 2 Q 0 2 2 2 det( ) I 2 0 he aalogous operator to Q ay symmetrc matr S to XSX symmetrc matr algebra s the oe that maps

Bloc Cases Let ( ; ; ) ad s ( s ; ; s ), where, s 1 1 1 2 e ( e; ; e ) 1 Q Q Q 1 det() det( ) tr() 2e tr( ) 2 F 2 F 2 ma

Hstory of ACCPM Soeved (1988), New algorthms cove programmg based o a otato of ceter ad o ratoal etrapolatos. Goff, Haure, ad Val (1992), Decomposto ad odfferetable optmzato wth the projectve algorthm. Ye (1992), A potetal reducto algorthm allowg colum geerato. Ye (1997), Complety aalyss of the aalytc ceter cuttg plae method that uses multple cuts. Goff ad Val (2000), Multple cuts the aalytc ceter cuttg plae methods. Luo ad Su (2000), A polyomal cuttg surfaces algorthm for the cove feasblty problem defed by self-cocordat equaltes. oh, Zhao, ad Su (2002), A multple-cut aalytc ceter cuttg plae method for semdefte feasblty problems. Osoorouch ad Goff (2003), he aalytc ceter cuttg plae method wth semdefte cuts. Osoorouch ad Goff (2005), A teror pot cuttg plae method for the cove feasblty problem wth secod-order coe equaltes.

Recet Wors o ACCPM Svaramarsha (2007), A parallel dual decomposto algorthm for polyomal optmzato problems wth structured sparsty Osoorouch ad Goff (2007), A matr geerato approach for egevalue optmzato Osoorouch ad Mtchell (2008), A secod-order coe cuttg surface method: complety ad applcato Svaramarsha, Martez, ad erlay (2006), A coc teror pot decomposto approach for large scale semdefte programmg Baboeau ad Val (2006), ACCPM wth a olear costrat ad a actve set strategy to solve olear multcommodty flow problems Baboeau, Merle ad Val (2006), Solvg large scale lear multcommodty flow problems wth a actve set strategy ad Promal-ACCPM

Secod-order coe cuttg surface method Let y m : Α y c, ad A y c w here A A, A,, A, c c ; c ; ; c, A 1 2 1 2 1 2 q be a compact cove set. Assume: 1) cotas a full dmesoal ball wth radus. 2) here s a oracle that returs cuts. q q m l We are terested fdg a pot ths ball

Aalytc Ceter Defe the dual barrer fucto where ( s, s) 1 log det s 2 log s, s : c A y 0, s : c A y 0. It s easy to verfy that s a strctly cocave fucto o the teror of. herefore the mamzer of ths fucto ests ad s uque. hs mamzer s called the aalytc ceter. From the KK optmalty codtos y s the aalytc ceter of f ad oly f there ests s 0 ad s 0 such that 1 1 A A 0

Aalytc Ceter he prmal barrer fucto: over 1 (, ) : c log det( ) c log 2 q l, : A A 0 s also strctly cocave. herefore has a uque mamzer over. he Cartesa product of ad gves the prmal-dual set of localzato. he correspodg barrer fucto s defed va (,, s, s) (, ) ( s, s)

Optmalty Codtos: he aalytc ceter s uquely defed: Optmalty Codtos: A A 0 s : c - A 1 1 y 0 s : c A y 0 s s

Optmalty Codtos: he aalytc ceter s uquely defed: Appromate aalytc ceter A A 0 s c A y 0 s c A y 0 Q 1/2 2 2 s e s 1 F 1

Newto drecto: Let a strctly feasble pot be gve. Sce s strctly cocave o, mplemetg Newto's method to mamze over yelds d 2 d X s he aalytc ceter of the dual the reads y where Q s, 1 G g 2 G AQA AX A 2 g AQc AX c,.

So far: We defed the dual set of localzato ad the prmal set of localzato m y : Α y c, ad A y c q l, : A A 0 ad dscussed how to compute the aalytc ceter.

he algorthm: 0 0 Let (, ),a strctly feasble pot of (Prmal Set of Localzato) be gve q l, : A A 0 Step 1. Compute (, ), a appromate aalytc ceter of ad y, a appromate ceter of Step 2. Call the oracle. If y s the -ball stop. Step 3. If the oracle returs a sgle lear cut b y d, update q l,, 0 : A A b 0 Step 4. If the oracle returs multple secod-order coe cut B y p d, update q, u p l, : A Bu A 0 Step 5. Fd a strctly feasble pot of ad retur to Step 1.

he updatg drectos: a sgle LC q l,, 0: A A b 0 Mtchell-odd drecto: ma st.. log A d Ad b 0 Result 1: Q s 1/2 2 2 d Sd 1 1.,,, where d, d, ad 1- s a strctly feasble pot of. 2. Startg from ths pot, O(1) Newto steps suffces to obta a appromate aalytc ceter of F

he updatg drectos: multple SOCC s p l, u, : A Au A 0 ma st.. 1 log det u 2 A d Bu Ad 0 Q s 1/2 2 2 d Sd 1 F Result 2: 1., u,, where d, d, ad 1- s a strctly feasble pot of. 2. Startg from ths pot, O( p log( p 1) ) Newto steps suffces to obta a appromate aalytc ceter of

Complety: Result 3: he aalytc ceter cuttg surface algorthm fds a pot the -ball, whe the total umber of lear ad secod-order coe cuts reaches the boud O mp 2 3, where p s the mamum umber of secod-order coe cuts added at the same tme ad 0 s a codto umber of a feld of cu ts.

Lear-quadratc-semdefte programmg problem: Prmal m st.. C X c c X A A b, I X 1, X 0, 0, 0 Dual ma st.. b y z y zi C, A y c, A y c Parameters: C A s q l, c, c, q l, A, b, s m :, ( X ) A X, s :, m m m m y m 1 y A Varables: m s q l X,,, y

Lear-quadratc-semdefte programmg problem: ma st.. b y z y zi C, A y c, A y c ma b y ( C y) st.. A A y m y c, c

M-egevalue fucto: f ( y) b y ( C y) m he mmum egevalue of a symmetrc matr ca be cast as a SDP: f ( y) b y m ( C y) V tr( V ) 1, V 0 Usg the Clar geeralzed gradet of m ( C - y) ad a cahr rule: f ( y) b v v ( Q AQ) V, tr( V ) 1, V m pˆ where the orthoormal colums of Q pˆ are the egevectors corresposg to m ( C - y) p. wth multplcty ˆ

From optmzato to feasblty: Let ( y; z) : A y c, A y c, b y z, 0 m 1 0 where s large eough to esure cotas the optmal soluto. 0 0 0 0 Let y, z be a tal query pot. If f s dfferetable at y, the pˆ 1 ad Q 0 reduces to a colum vector q, ad s updated by ( y ˆ ˆ where bˆ m, wth bˆ q A q, 1,... m, ad dˆ q Cq. 0 0 ; z) : b y z d, b y z ma(, f ( y )), 0 0 If f s odfferetable at y, the p 1 ad s updated by ˆ 0 0 ( y; z) : ˆ y zi Dˆ, b y z ma(, f ( y )), where ˆ y zi Dˆ s a pˆ dmesoal semdefte equalty, ad ˆ y y Bˆ ad Bˆ Q A Q, 1,..., m, Dˆ Q CQ.

Secod-order coe relaato a b a c a b 0 a b a b c b 2c 2c 3 O the other had, every 2 semdefte matr s postve semdefte 2 prcple submatr of a postve Now cosder the semdefte equalty. Cosder the 2 2 prcple submatr locatos ad j, j ˆ y zi Dˆ

Secod-order coe relaato ˆ y zi Dˆ Dˆ Dˆ Bˆ Bˆ 1 0 z Dˆ Dˆ Bˆ Bˆ 0 1 m j j y j jj 1 j jj 0 ˆ ˆ ˆ ˆ D y B z Dj y Bj ˆ ˆ ˆ ˆ D y B D y B z j j jj jj 0 ˆ ˆ ˆ ˆ D D y B B 2z jj jj ˆ ˆ ˆ D D y B Bˆ jj jj 2Dˆ 2 y Bˆ j j 3

Secod-order coe relaato herefore a pˆ dmesoal semdefte cut ca be relaed pˆ( pˆ 1) to p secod-order coe cuts. herefore at each 2 terato, the set of localzato has the form m 1 ˆ ˆ ˆ y : A y 2 ze c, ( A ) y 1z cˆ, ad b y z, where Aˆ cotas q 2 ˆ m A l, cotas ma, f y l 1 1 1 p blocs of SOCC's, lear cuts, ad

A smple llustrato: f ( y) m{ a y b : 1,..., m} y y y m 1 (, ) :, ad

A smple llustrato: f ( y) m{ a y b : 1,..., m} y y y m 1 (, ) :, ad

A smple llustrato: f ( y) m{ a y b : 1,..., m} y y y m 1 (, ) :, ad

Stoppg crtero: he lower boud s updated at each terato by costructo. Gve the defto of, at the th terato the followg relaato of the dual s formed: ma st.. b y ˆ A y 2ze cˆ ( Aˆ ) y 1z cˆ b y z z

Stoppg crtero: A upper boud for ths problem s obtaed by evaluatg the objectve fucto of the restrcted prmal problem at a feasble pot: m ( cˆ ) ( cˆ ) st.. A ˆ Aˆ b b 2e 1 1 0, 0, 0 O the other had from optmalty codtos of the aalytc ceter we have ˆ ˆ A A b 0 2e 1 0 herefore ( /, /, 0) s feasble for restrcted prmal problem ad 1 : ( cˆ ) ( cˆ ) s the updated upper bou d.

Covergece behavor:

, m, s l lc socc p dm gap SOCCSM SDPLR SDP3 SeDuM 300, 50, 100 14 46 3 109 9.2e-4 16 29 69 352 300, 100, 600 4 31 4 121 7.8e-4 56 78 225 843 300, 200, 1100 4 44 4 169 8.6e-4 191 146 503 1834 300, 300, 800 11 79 8 518 9.2e-4 739 -- 656 -- 300, 300, 1000 5 62 7 335 9.2e-4 561 -- 747 -- 500, 50, 200 4 33 4 128 7.6e-4 77 144 247 1245 500, 100, 1000 9 21 3 69 7.3e-4 67 358 1227 2504 500, 200, 500 11 81 5 384 9.1e-4 643 -- 1555 -- 500, 200, 2000 9 30 3 94 8.6e-4 398 -- 1791 -- 500, 300, 1000 1 44 7 221 4.7 646 -- 2558 -- 800, 10, 800 8 1 2 10 4.2e-4 7 159 553 2798 800, 50, 500 1 22 3 58 9.1e-4 77 433 1453 3449 800, 100, 800 2 32 4 114 9.4e-4 313 -- 2811 -- 800, 200, 1000 1 28 4 107 3.4e-3 467 -- 5814 -- 800, 200, 1500 1 24 5 98 4.5e-3 424 -- 6332 --

, m, s l lc socc p dm gap SOCCSM SDPLR SDP3 SeDuM 1000, 10, 500 2 7 2 16 7.6e-4 14 227 986 3995 1000, 10, 400 11 17 2 45 8.4e-4 110 -- 2097 -- 1000, 50, 900 1 19 2 39 8.8e-4 69 -- 2553 -- 1000, 100, 500 3 46 3 137 3.9e-3 223 -- -- -- 1000, 100, 1000 0 20 3 49 4.3e-3 134 -- -- -- 2000, 10, 100 1 12 2 25 7.3e-4 112 -- 4929 -- 2000, 10, 500 1 8 2 17 7.1e-4 65 -- 5996 -- 2000, 10, 1000 0 7 2 14 4.8e-4 59 -- 6617 -- 2000, 20, 100 1 13 3 34 2.6e-3 177 -- 8136 -- 2000, 20, 800 1 7 2 15 3.7e-3 70 -- 9050 -- 2500, 10, 100 2 6 2 14 4.5e-3 104 -- 9999 -- 2500, 20, 50 4 18 3 41 4.3e-3 368 -- 9999 -- 2500, 20, 500 6 2 2 10 4.8e-3 87 -- 9999 -- 3000, 10, 100 1 9 2 19 4.3e-3 177 -- -- -- 3000, 10, 500 0 6 2 12 3.2e-3 106 -- -- --