Sven Heinemeyer WIN (Heidelberg),

Similar documents
Sven Heinemeyer GK Seminar, University of Freiburg,

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

CP-violating Loop Effects in the Higgs Sector of the MSSM

Discussion: SUSY via searches for additional Higgs(inos)

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Sven Heinemeyer, gg H and q q H at the LHC, Wuppertal,

HiggsSignals. Testing BSM physics with LHC Higgs precision data. Tim Stefaniak. Deutsches Elektronen-Synchrotron DESY, Hamburg

Higgs Signals and Implications for MSSM

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Resonant H/A Mixing in CP Noninvariant 2HDM and MSSM

Introduction to HiggsBounds

BSM Higgs Searches at ATLAS

FeynHiggs. Henning Bahl. TOOLS, , Corfu. Max-Planck Institut für Physik, Munich

Higgs boson(s) in the NMSSM

MSSM Higgs self-couplings at two-loop

Implication of LHC Higgs Signal for the MSSM Parameter Regions

Phenomenology of a light singlet-like scalar in NMSSM

Two Higgs Doublets Model

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

Beyond the Standard Model Higgs boson searches using the ATLAS etector

Dark Matter Implications for SUSY

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

Pseudoscalar Higgs boson signatures at the LHC

Highlights of Higgs Physics at LEP

Searches for Beyond SM Physics with ATLAS and CMS

Search for BSM Higgs bosons in fermion decay modes with ATLAS

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Status of low energy SUSY models confronted with the 125 GeV Higgs data

Charged Higgs in view of the LHC constraints in phenomenological MSSM

mh = 125 GeV and SUSY naturalness

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

arxiv: v1 [hep-ex] 5 Sep 2014

Basics of Higgs Physics

Physics prospects for the LHC

Neutralino Dark Matter and the 125 GeV Higgs boson measured at the LHC

The study of the properties of the extended Higgs boson sector within hmssm model

Split SUSY and the LHC

Beyond the MSSM (BMSSM)

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Searching for neutral Higgs bosons in non-standard channels

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Natural SUSY and the LHC

Higgs Results from LEP2. University of Wisconsin January 24, 2002 WIN 02

Hidden two-higgs doublet model

Precision Observables M W, (g 2) µ

arxiv: v2 [hep-ph] 26 Feb 2013

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

Hidden Higgs boson in extended supersymmetric scenarios at the LHC

Supersymmetric Origin of Matter (both the bright and the dark)

Non-Standard Higgs Decays

+ µ 2 ) H (m 2 H 2

Search for Higgs in the Two Doublet Models

Electroweak Baryogenesis after LHC8

arxiv: v2 [hep-ph] 13 Jul 2012

Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

Discovery potential for SUGRA/SUSY at CMS

Cosmology of long-lived stau scenarios in the light of the LHC results

Constrained Supersymmetry after the Higgs Boson Discovery: A global analysis with FITTINO

SUSY Phenomenology & Experimental searches

Beyond the SM: SUSY. Marina Cobal University of Udine

The Physics of Heavy Z-prime Gauge Bosons

Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM

Higgs Searches at Hadron Colliders

Higgs Searches beyond SM

Lepton non-universality at LEP and charged Higgs

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

The ILC and its complementarity to the LHC

Higgs searches at LEP: Beyond the SM and MSSM models. Pauline Gagnon Indiana University

HUNTING FOR THE HIGGS

The Higgs discovery - a portal to new physics

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Supersymmetry at the LHC

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Lecture 18 - Beyond the Standard Model

Higgs in the light of Hadron Collider limits: impact on a 4th generation

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Yukawa and Gauge-Yukawa Unification

The Standard Model and Beyond

Neutralino dark matter in the NMSSM

Dark Matter Direct Detection in the NMSSM

Electroweak baryogenesis as a probe of new physics

Detecting Higgs Bosons within Supersymmetric Models

Review of ATLAS experimental results (II)

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Hidden / Camouflaged Higgs

BSM Higgs searches with the ATLAS experiment

SEARCH FOR RARE & EXOTIC HIGGS DECAY AND PRODUCTION: STATUS AND PERSPECTIVES

Complete LEP Data: Status of Higgs Boson Searches

Probing SUSY Contributions to Muon g-2 at LHC and ILC

Higgs Physics as an Indirect BSM Probe

The HL-LHC physics program

Beyond the Standard Model Higgs Boson Searches at DØ

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Little Higgs Models Theory & Phenomenology

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

LHC+LC Synergy: SUSY as a case study

P. Sphicas/SSI2001. Standard Model Higgs

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

arxiv:hep-ph/ v1 6 Feb 2004

Transcription:

Sven Heinemeyer WIN (Heidelberg), 09.06.2015 1

New Developments for SUSY Higgses Sven Heinemeyer, IFCA (CSIC, Santander) Heidelberg, 06/2015 1. Why it is not the SM Higgs 2. Higgs bosons in the MSSM 3....at the LHC and Beyond 4. Conclusions Sven Heinemeyer WIN (Heidelberg), 09.06.2015 1

1. Why it is not the SM Higgs Fact I: We have a discovery! 0 Local p 10 10 10 10 10 10 10 10 10 10 1-1 -2-3 -4-5 -6-7 -8-9 -10-11 10 ATLAS 2011-2012 -1 s = 7 TeV: Ldt = 4.6-4.8 fb -1 s = 8 TeV: Ldt = 5.8-5.9 fb Obs. Exp. ±1 σ 110 115 120 125 130 135 140 145 150 m H [GeV] 0σ 1σ 2σ 3σ 4σ 5σ 6σ Sven Heinemeyer WIN (Heidelberg), 09.06.2015 2

Fact II: The SM cannot be the ultimate theory! Some facts: 1. gravity is not included 2. the hierarchy problem 3. Dark Matter is not included 4. neutrino masses are not included 5. anomalous magnetic moment of the muon shows a 4σ discrepancy Sven Heinemeyer WIN (Heidelberg), 09.06.2015 3

Fact I & II: We have a discovery! The SM cannot be the ultimate theory! Conclusion: It cannot be the SM Higgs! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 4

Fact I & II: We have a discovery! The SM cannot be the ultimate theory! Conclusion: It cannot be the SM Higgs! Q: Does the BSM physics have any (relevant) impact on the Higgs? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 4

Fact I & II: We have a discovery! The SM cannot be the ultimate theory! Conclusion: It cannot be the SM Higgs! Q: Does the BSM physics have any (relevant) impact on the Higgs? A: check changed properties A: check for additional Higgs bosons Sven Heinemeyer WIN (Heidelberg), 09.06.2015 4

Which model should we focus on? Some recent measurements: top quark mass Higgs boson mass Higgs boson couplings Dark Matter (properties) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 5

Which model should we focus on? Some recent measurements: top quark mass Higgs boson mass Higgs boson couplings Dark Matter (properties) Simple SUSY models predicted correctly: top quark mass Higgs boson mass Higgs boson couplings Dark Matter (properties) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 5

Which model should we focus on? Some recent measurements: top quark mass Higgs boson mass Higgs boson couplings Dark Matter (properties) Simple SUSY models predicted correctly: top quark mass Higgs boson mass Higgs boson couplings Dark Matter (properties) good motivation to look at SUSY! :-) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 5

2. Higgs bosons in the MSSM: Superpartners for Standard Model particles Sven Heinemeyer WIN (Heidelberg), 09.06.2015 6

The simplest case: MSSM with real paremeters Enlarged Higgs sector: Two Higgs doublets H 1 = H 2 = H1 1 H1 2 H1 2 H 2 2 = = v 1 +(φ 1 +iχ 1 )/ 2 φ 1 φ + 2 v 2 +(φ 2 +iχ 2 )/ 2 V = m 2 1 H 1 H 1 +m 2 2 H 2 H 2 m 2 12 (ǫ abh a 1 Hb 2 +h.c.) physical states: h 0,H 0,A 0,H ± Goldstone bosons: G 0,G ± + g 2 +g 2 (H 1 H 1 H 2 H 2 ) 2 + g2 H 1 H 2 2 }{{ 8 }}{{} 2 gauge couplings, in contrast to SM m h M Z Input parameters: (to be determined experimentally) tanβ = v 2 v 1, MA 2 = m2 12 (tanβ +cotβ) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 7

The lightest MSSM Higgs boson MSSM predicts upper bound on M h : tree-level bound: m h < M Z, excluded by LEP Higgs searches! Large radiative corrections: Yukawa couplings: em t 2M W s W, em 2 t M W s W,... Dominant one-loop corrections: M 2 h G µm 4 t log ( m t 1 m t 2 m 2 t The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector) Present status of M h prediction in the MSSM: Complete 1L, almost complete 2L available, LL+NLL resummed,... ) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 8

t sector of the MSSM: Stop mass matrix M 2 t = M 2 t L +m 2 t +DT t 1 m t X t θ t m 2 t 1 0 m t X t M 2 t R +m 2 t +DT t 2 0 m 2 t 2 with X t = A t µ/tanβ mixing important in stop sector! Simplifying abbreviation: M SUSY, M S := M t L = M t R Sven Heinemeyer WIN (Heidelberg), 09.06.2015 9

Upper bound on M h in the MSSM: Unconstrained MSSM : M A, tanβ, 5 parameters in t b sector, µ, m g, M 2 M h < 135 GeV for m t = 173.2±0.9GeV and m t < O(few TeV) (including theoretical uncertainties from unknown higher orders) clear prediction for the LHC Obtained with: FeynHiggs www.feynhiggs.de [T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein 98 15] all Higgs masses, couplings, BRs, XSs (easy to link, easy to use :-) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 10

Upper bound on M h in the MSSM: Unconstrained MSSM : M A, tanβ, 5 parameters in t b sector, µ, m g, M 2 M h < 135 GeV Note : 125 < 135! for m t = 173.2±0.9GeV and m t < O(few TeV) (including theoretical uncertainties from unknown higher orders) clear prediction for the LHC Obtained with: FeynHiggs www.feynhiggs.de [T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein 98 15] all Higgs masses, couplings, BRs, XSs (easy to link, easy to use :-) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 10

The embarrasing situation: The Higgs mass accuracy in the MSSM: Sven Heinemeyer WIN (Heidelberg), 09.06.2015 11

The embarrasing situation: The Higgs mass accuracy in the MSSM: Experiment: ATLAS: CMS: combined: M exp h M exp h M exp h = 125.36±0.37±0.18 GeV = 125.03±0.27±0.15 GeV = 125.09±0.21±0.11 GeV Sven Heinemeyer WIN (Heidelberg), 09.06.2015 11

The embarrasing situation: The Higgs mass accuracy in the MSSM: Experiment: ATLAS: CMS: combined: M exp h M exp h M exp h = 125.36±0.37±0.18 GeV = 125.03±0.27±0.15 GeV = 125.09±0.21±0.11 GeV Theory: δm theo h 3 GeV Sven Heinemeyer WIN (Heidelberg), 09.06.2015 11

The embarrasing situation: The Higgs mass accuracy in the MSSM: Experiment: ATLAS: CMS: combined: M exp h M exp h M exp h = 125.36±0.37±0.18 GeV = 125.03±0.27±0.15 GeV = 125.09±0.21±0.11 GeV Theory: δm theo h 3 GeV Theory prediction must be improved to match the experimental accuracy! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 11

The embarrasing situation: The Higgs mass accuracy in the MSSM: Experiment: ATLAS: CMS: combined: M exp h M exp h M exp h = 125.36±0.37±0.18 GeV = 125.03±0.27±0.15 GeV = 125.09±0.21±0.11 GeV Theory: δm theo h 3 GeV Theory prediction must be improved to match the experimental accuracy! dedicated working group has been formed to take care...(kuts) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 11

Sven Heinemeyer WIN (Heidelberg), 09.06.2015 12

Possible (likely?) omplication: The MSSM Higgs sector with CP violation H 1 = H 2 = H1 1 H1 2 H1 2 H 2 2 = = v 1 +(φ 1 +iχ 1 )/ 2 φ 1 φ + 2 v 2 +(φ 2 +iχ 2 )/ 2 e iξ V = m 2 1 H 1 H 1 +m 2 2 H 2 H 2 m 2 12 (ǫ abh a 1 Hb 2 +h.c.) physical states: h 0,H 0,A 0,H ± + g 2 +g 2 (H 1 H 1 H 2 H 2 ) 2 + g2 H 1 H 2 2 }{{ 8 }}{{} 2 gauge couplings, in contrast to SM 2 CP-violating phases: ξ, arg(m 12 ) can be set/rotated to zero Input parameters: (to be determined experimentally) tanβ = v 2 v 1, M 2 H ± Sven Heinemeyer WIN (Heidelberg), 09.06.2015 13

The Higgs sector of the cmssm at the loop-level: Complex parameters enter via loop corrections: µ : Higgsino mass parameter A t,b,τ : trilinear couplings X t,b,τ = A t,b,τ µ {cotβ,tanβ} complex M 1,2 : gaugino mass parameter (one phase can be eliminated) M 3 : gluino mass parameter can induce CP-violating effects Result: with (A,H,h) (h 3,h 2,h 1 ) m h3 > m h2 > m h1 strong changes in Higgs couplings to SM gauge bosons and fermions see Sebastian Paßehr s talk this afternoon! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 14

CPV effects on Higgs boson searches: CPX: benchmark scenario in the cmssm [M. Carena, J. Ellis, A. Pilaftsis, C. Wagner 00] LEP Higgs production cross sections: [LEPHiggsWG 06] σ (10-2 pb) 10 8 6 H 1 H 2 bb bb H 1 H 2 H 1 H 1 H 1 bb bb bb H 1 Z bb Z H 2 Z H 1 H 1 Z bb bb Z s =202 GeV 4 2 0 2 4 6 8 10 12 14 tanβ Sven Heinemeyer WIN (Heidelberg), 09.06.2015 15

Results of LEP searches in CPX scenario: [LEPHiggsWG 06] m t = 169.3 GeV m t = 174.3 GeV tanβ (a) Excluded by LEP tanβ (b) Excluded by LEP 10 10 1 CPX Theoretically Inaccessible 1 CPX Theoretically Inaccessible 0 20 40 60 80 100 120 140 m H1 (GeV/c 2 ) 0 20 40 60 80 100 120 140 m H1 (GeV/c 2 ) The LEP analysis showed unexcluded holes in the m h1 tanβ plane masses below 62 GeV ruled out, but above...? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 16

3....at the LHC and beyond Can we learn something on SUSY from the Higgs mass measurement? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 17

3....at the LHC and beyond Can we learn something on SUSY from the Higgs mass measurement? A simple exercise on stop masses: Dominant one-loop corrections: M 2 h G µm 4 t log ( m t 1 m t 2 m 2 t ) The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 17

3....at the LHC and beyond Can we learn something on SUSY from the Higgs mass measurement? A simple exercise on stop masses: Dominant one-loop corrections: M 2 h G µm 4 t log ( m t 1 m t 2 m 2 t ) The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector) only certain combinations of stop parameters are compatible with the Higgs discovery. clear prediction for the LHC? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 17

3....at the LHC and beyond Can we learn something on SUSY from the Higgs mass measurement? A simple exercise on stop masses: Dominant one-loop corrections: M 2 h G µm 4 t log ( m t 1 m t 2 m 2 t ) The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector) only certain combinations of stop parameters are compatible with the Higgs discovery. clear prediction for the LHC? For this exercise make sure: use the best available Higgs mass calculation! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 17

3....at the LHC and beyond Can we learn something on SUSY from the Higgs mass measurement? A simple exercise on stop masses: Dominant one-loop corrections: M 2 h G µm 4 t log ( m t 1 m t 2 m 2 t ) The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector) only certain combinations of stop parameters are compatible with the Higgs discovery. clear prediction for the LHC? For this exercise make sure: use the best available Higgs mass calculation! FeynHiggs! :-) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 17

Stop masses: [P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein, L. Zeune 15 PRELIMINARY] M h = 125±3 GeV : best-fit point red: χ 2 < 2.3 orange: χ 2 < 5.99 blue: all points HiggsBounds allowed gray: all scan points M h 125 GeV requires large X t and/or large M SUSY Sven Heinemeyer WIN (Heidelberg), 09.06.2015 18

Stop masses: [P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein, L. Zeune 15 PRELIMINARY] M h = 125±3 GeV : best-fit point red: χ 2 < 2.3 orange: χ 2 < 5.99 blue: all points HiggsBounds allowed gray: all scan points light and heavy stops compatible with M h 125 GeV Sven Heinemeyer WIN (Heidelberg), 09.06.2015 19

Stop masses for M h = 125 GeV [A. Arbey et al., 11] M h 125 GeV requires large X t and/or large M SUSY no clear prediction for the LHC! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 20

(MSSM) Higgs limit setting at the LHC and beyond Two complementary methods for searches and limits: 1. obtain model independent limits on cross sections and branching ratios What is interesting to look out for? How to take the Higgs discovery into account? 2. obtain limits in representative benchmark scenarios Which constraints should be taken into account? Which not? And why? some (representative?) examples Sven Heinemeyer WIN (Heidelberg), 09.06.2015 21

The Vanilla solution: the discovery is interpreted as the light CP-even Higgs measure its couplings, any deviation from the SM? search for additional heavier Higgs bosons re-interpretation of SM Higgs searches? special issues for heavy Higgs phenomenology Higgs SUSY decays? Higgs production from SUSY decays? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 22

Coupling measurement: [P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein 14] BR(H inv.) 2σ 1σ 2σ κ V 1σ 2σ κ u 1σ 2σ κ d 1σ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Very general model: κ V,κ u,κ d,κ l,κ g,κ γ,br(h inv.) using HiggsSignals with 80 channels from ATLAS, CMS, CDF, DØ κ l κ g κ γ 2σ 1σ 2σ 1σ 2σ 1σ 0 0.5 1 1.5 2 2.5 Sven Heinemeyer WIN (Heidelberg), 09.06.2015 23

Beyond LHC: HL-LHC vs. ILC in the most general κ framework: [P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein 14] assumption: BR(H NP) = BR(H inv.) BR(H inv.) κw κz κu κd κl κg κγ 0.0 0.01 0.02 0.03 0.04 0.05 0.82 1.15 HiggsSignals 0.90 0.925 0.95 0.975 1.00 1.025 1.05 1.075 1.10 HL LHC (S2, opt.) ILC 250 ILC 500 ILC 1000 ILC 1000 (LumiUp) strong improvement with the ILC! deviations from SM? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 24

Re-interpretation of SM Higgs search results: g 2 hvv = sin2 (β α)g 2 HVV,SM, g2 HVV = cos2 (β α)g 2 HVV,SM some coupling strength could remain for the heavy Higgs go ahead for stronger limits! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 25

Search (interpretation) in new benchmark scenarios: [LHCHXSWG M. Carena, S.H., O. Stål, C. Wagner, G. Weiglein, 13] designed to have M h 125±3 GeV and to reproduce rate measurements designed to exhibit certain features of Higgs phenomenology light Higgs phenomenlogy heavy Higgs phenomenology Not taken into account on purpose: Flavor contraints Precision observables Dark Matter... can all be avoided easily by small model modification that do not change the Higgs phenomenology do not overconstrain yourself! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 26

m mod+ h scenario: m t = 173.2 GeV, M SUSY = 1000 GeV, µ = 200 GeV, M 2 = 200 GeV, X OS t = 1.5M SUSY A b = A τ = A t, m g = 1500 GeV, m l 3 = 1000 GeV. M h 125 GeV nearly everywhere Sven Heinemeyer WIN (Heidelberg), 09.06.2015 27

m mod+ h scenario: effect of non-sm Higgs decays: strong impact from H/A χ 0 i χ0 j, χ± k χ l disover heavy Higgses and SUSY at the same time! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 28

Higgs production from SUSY decays: ATLAS and CMS are now also searching for pp χ ± 1 χ0 2 W± χ 0 1 χ0 2 W± χ 0 1 h χ0 1 W± χ 0 1 b b χ 0 1 Sven Heinemeyer WIN (Heidelberg), 09.06.2015 29

Phenomenology at very low tanβ: look at the m max h scenario: m t = 173.2 GeV, M SUSY = 1000 GeV, µ = 200 GeV, M 2 = 200 GeV, X OS t = 2M SUSY A b = A τ = A t, m g = 1500 GeV, m l 3 = 1000 GeV. tanβ > 4 for M SUSY < few TeV But what happens for M SUSY > 10 TeV? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 30

Example scenario: low-tb-high [S.H. (LHCHXSWG??) 14] M SUSY and X t adjusted to give M h 125 GeV everywhere 10 9 8 low-tb-high M h < 120 120 < M h < 122 122 < M h < 124 tanβ 7 6 5 124 < M h < 126 126 < M h < 128 128 < M h < 130 130 < M h 4 3 2 1 200 300 400 500 M A [GeV] lower tan β values possible! Relevant? new relevant decay channels! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 31

Example scenario: low-tb-high : H hh [S.H. (LHCHXSWG??) 15] M SUSY and X t adjusted to give M h 125 GeV everywhere 10 9 8 7 6 low-tb-high 0.8 < BR(H -> hh) < 0.9 0.7 < BR(H -> hh) < 0.8 0.6 < BR(H -> hh) < 0.7 0.5 < BR(H -> hh) < 0.6 0.4 < BR(H -> hh) < 0.5 0.3 < BR(H -> hh) < 0.4 0.2 < BR(H -> hh) < 0.3 0.1 < BR(H -> hh) < 0.2 tanβ 5 4 3 2 important at low tanβ 1 200 300 400 500 M A [GeV] Sven Heinemeyer WIN (Heidelberg), 09.06.2015 32

The exotic solution: the discovery is interpreted as the heavy CP-even Higgs In principle also possilbe: M h < 125 GeV M H 125 GeV Consequences: all Higgs bosons very light easy(?) discovery of additional Higgs bosons at the LHC Constraints: direct searches for the lightest CP-even Higgs direct searches for the heavy neutral Higgses direct searches for the charged Higgses flavor constraints (BR(B s µ + µ ) etc.) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 33

The exotic solution: the discovery is interpreted as the heavy CP-even Higgs In principle also possilbe: M h < 125 GeV M H 125 GeV Consequences: all Higgs bosons very light easy(?) discovery of additional Higgs bosons at the LHC Constraints: direct searches for the lightest CP-even Higgs direct searches for the heavy neutral Higgses direct searches for the charged Higgses flavor constraints (BR(B s µ + µ ) etc.) original scenario: low-m H Sven Heinemeyer WIN (Heidelberg), 09.06.2015 33

The exotic solution: the discovery is interpreted as the heavy CP-even Higgs In principle also possilbe: M h < 125 GeV M H 125 GeV Consequences: all Higgs bosons very light easy(?) discovery of additional Higgs bosons at the LHC Constraints: direct searches for the lightest CP-even Higgs direct searches for the heavy neutral Higgses direct searches for the charged Higgses flavor constraints (BR(B s µ + µ ) etc.) original scenario: low-m H ruled out by charged Higgs searches stay tuned for updated scenario! :-) Sven Heinemeyer WIN (Heidelberg), 09.06.2015 33

The general possibility: the discovered Higgs is the second-lightest one more contrived in the MSSM with real parameters easier (?) possible in the MSSM with complex parameters easier (!) possible in the NMSSM light Higgs can be singlet like can more easily escape detection Is such a light Higgs detectable at the LHC? h 2 h 1 h 1 possible, but strongly suppressed for M h1 > 63 GeV so far few (and weak ) LHC searches for a Higgs with M h1 < 100 GeV Possible: SUSY SUSY h 1, e.g. χ 0 2 χ0 1 h 1 Sven Heinemeyer WIN (Heidelberg), 09.06.2015 34

LHC Higgs searches below 100 GeV: crucial to cover extended Higgs sectors needed to re-check LEP exclusions ( 2.xσ excess around 98 GeV) S95 1 10-1 (a) LEP s = 91-209 GeV SM branching ratios Observed Expected for background Best/only channel? h 1 γγ?? 10-2 20 40 60 80 100 120 m H1 (GeV/c 2 ) we cannot encourage you enough to perform this search! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 35

4. Conclusinos LHC: we have a HIGGS DISCOVERY!!! M H 125.1±0.2 GeV It is impossible that it is SM Higgs Impact of BSM physics on Higgs sector?? impact on couplings of the discovered Higgs search for additional Higgs bosons Implications in the rmssm, cmssm, NMSSM The discovered Higgs could be the lightest or second-lightest Higgs of each model various, different implications Searches/interpretation via general limits benchmark scenarios always take into account the discovery (mass, properties) rmssm, M H 125 GeV: disfavored by charged Higgs searches but well possible in other models (cmssm, NMSSM,...) search for new states above and below 125 GeV Sven Heinemeyer WIN (Heidelberg), 09.06.2015 36

Sven Heinemeyer WIN (Heidelberg), 09.06.2015 37

Back-up Sven Heinemeyer WIN (Heidelberg), 09.06.2015 38

Beyond LHC: HL-LHC vs. ILC in the most general κ framework: [P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein 14] assumption: κ V 1 BR(H NP) κw κz κu κd κl κg κγ 0.0 0.01 0.02 0.03 0.04 0.05 0.82 1.15 HiggsSignals 0.90 0.925 0.95 0.975 1.00 1.025 1.05 1.075 1.10 HL LHC (S2, opt.) ILC 250 ILC 500 ILC 1000 ILC 1000 (LumiUp) strong improvement with the ILC! deviations from SM? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 39

Beyond LHC: HL-LHC vs. ILC in the most general κ framework: [P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein 14] no theory assumptions, full fit BR(H NP) κw κz κu κd κl κg κγ 0.0 0.01 0.02 0.03 0.04 0.05 ILC 250 ILC 500 ILC 1000 0.82 1.16 ILC 1000 (LumiUp) HiggsSignals 0.90 0.925 0.95 0.975 1.00 1.025 1.05 1.075 1.10 high ILC precision, not possible at the LHC deviations from SM? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 40

Beyond LHC: HL-LHC vs. ILC in the most general κ framework: [P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein 14] no theory assumptions, full fit BR(H NP) κw κz κu κd κl κg κγ 0.0 0.01 0.02 0.03 0.04 0.05 HiggsSignals HL LHC (Γ tot free) HL LHC ILC 250 (σzh total) HL LHC ILC 250 HL LHC ILC 500 HL LHC ILC 1000 0.90 0.925 0.95 0.975 1.00 1.025 1.05 1.075 1.10 HL LHC ILC 1000 (LumiUp) strong improvement with the ILC! deviations from SM? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 41

b effects on b b H/A b b: b = 2α s 3π m gµ tanβ I(m b 1,m b 2,m g )+ α t 4π A tµ tanβ I(m t 1,m t 2,µ) Additional factors wrt. the SM: σ(b bh/a) BR(H/A b b) tanβ2 (1+ b ) 2 60 50 µ = -1000 GeV µ = -200 GeV µ = +200 GeV µ = +1000 GeV m h -mod+ 60 50 µ = -1000 GeV µ = -200 GeV µ = +200 GeV µ = +1000 GeV m h -mod- 40 40 tan β 30 tan β 30 20 20 10 10 0 100 150 200 250 300 350 0 100 150 200 250 300 350 M A [GeV] M A [GeV] phenomenology can depend on new parameters! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 42

Where is the light Higgs in the heavy Higgs case? low M h values, strongly reduced couplings Sven Heinemeyer WIN (Heidelberg), 09.06.2015 43

low-m H scenario: m t = 173.2 GeV, M A = 110 GeV, M SUSY = 1500 GeV, M 2 = 200 GeV, X OS t 2.45M SUSY A b = A τ = A t, m g = 1500 GeV, m l 3 = 1000 GeV. M H 125 GeV can in principle be realized Sven Heinemeyer WIN (Heidelberg), 09.06.2015 44

low-m H scenario: m t = 173.2 GeV, M A = 110 GeV, M SUSY = 1500 GeV, M 2 = 200 GeV, X OS t 2.45M SUSY A b = A τ = A t, m g = 1500 GeV, m l 3 = 1000 GeV. Interesting prospects also for the charged Higgs searches Sven Heinemeyer WIN (Heidelberg), 09.06.2015 45

Latest ATLAS results for charged Higgs searches: [ATLAS 13] + B t bh 10-1 ATLAS Preliminary Data 2012 Observed CLs s = 8 TeV Expected ± 1σ ± 2σ Ldt = 19.5 fb -1-2 10 90 100 110 120 130 140 150 160 [GeV] model independent limits! + m H Sven Heinemeyer WIN (Heidelberg), 09.06.2015 46

Latest ATLAS results for charged Higgs searches: [ATLAS 13] tan β 60 50 40 30 20 Median expected exclusion Observed exclusion 95% CL Observed +1σ theory Observed -1σ theory Expected exclusion 2011 Observed exclusion 2011 ATLAS Preliminary max s=8 TeV m h Ldt = 19.5 fb -1 Data 2012 τ+jets 10 0 90 100 110 120 130 140 150 160 [GeV] + m H exclusion of light M H ± in the m max h scenario!...low-m H? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 47

Application of charged Higgs limits on low-m H scenario: [HiggsBounds 4.1] that (particular incarnation of the) low-m H scenario is excluded? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 48

Application of charged Higgs limits on low-m H scenario: [HiggsBounds 4.1] that (particular incarnation of the) low-m H scenario is excluded? Sven Heinemeyer WIN (Heidelberg), 09.06.2015 49

Analysis of χ 0 2 χ0 1 h 1 in the cmssm: [A. Fowler, G. Weiglein 09] Sven Heinemeyer WIN (Heidelberg), 09.06.2015 50

Recent FeynHiggs update: some numerical results [FeynHiggs 2.10.0] Parameters: M S = m t 1 m t 2 M A = 1000 GeV µ = 1000 GeV M 2 = 1000 GeV m g = 1600 GeV tanβ = 10 Vary M S, X t to analyze effects Sven Heinemeyer WIN (Heidelberg), 09.06.2015 51

M h (X t /M S ): 145 M SUSY = 1 TeV FeynHiggs 2.10.0 [FeynHiggs2.10.0] M SUSY = 2 TeV 140 M SUSY = 5 TeV M SUSY = 10 TeV 135 M SUSY = 15 TeV M SUSY = 20 TeV M h [GeV] 130 125 120 115-2.5-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 X t /M S [GeV] increase with M S, maxima at X t /M S = ±2 Sven Heinemeyer WIN (Heidelberg), 09.06.2015 52

M h (M S ) for various approximations: 155 150 FH295 3-loop 4-loop FeynHiggs 2.10.0 [FeynHiggs2.10.0] 145 140 5-loop 6-loop 7-loop LL+NLL X t /M S = 2 M h [GeV] 135 130 125 X t = 0 120 115 5000 10000 15000 20000 M S [GeV] 3-loop good for M S < 2 TeV, 7-loop: 1 GeV for M S = 20 TeV Sven Heinemeyer WIN (Heidelberg), 09.06.2015 53

M h (M S ) compared with H3m: 155 3-loop, O(α t α s 2 ) FeynHiggs 2.10.0 [FeynHiggs2.10.0] 150 145 3-loop full LL+NLL H3m A 0 = 0, tanβ = 10 140 M h [GeV] 135 130 125 120 115 5000 10000 15000 20000 M S [GeV] 3-loop O ( α 2 t α s,α 3 t ) beyond 3-loop important for precise Mh prediction! Sven Heinemeyer WIN (Heidelberg), 09.06.2015 54