Five Mini-Courses on Analysis

Similar documents
MAT 578 FUNCTIONAL ANALYSIS EXERCISES

A Course in Real Analysis

Measure, Integration & Real Analysis

Introduction to Functional Analysis With Applications

FUNDAMENTALS OF REAL ANALYSIS

Contents. 2 Sequences and Series Approximation by Rational Numbers Sequences Basics on Sequences...

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

C.6 Adjoints for Operators on Hilbert Spaces

Chapter 8 Integral Operators

MATHEMATICS. Course Syllabus. Section A: Linear Algebra. Subject Code: MA. Course Structure. Ordinary Differential Equations

MATH 113 SPRING 2015

Linear Topological Spaces

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE

Functional Analysis I

E.7 Alaoglu s Theorem

CHAPTER VIII HILBERT SPACES

Your first day at work MATH 806 (Fall 2015)

Classes of Linear Operators Vol. I

THEOREMS, ETC., FOR MATH 515

Analysis Preliminary Exam Workshop: Hilbert Spaces

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

THEOREMS, ETC., FOR MATH 516

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

Metrics, Norms, Inner Products, and Operator Theory

Course Description - Master in of Mathematics Comprehensive exam& Thesis Tracks

STUDY PLAN MASTER IN (MATHEMATICS) (Thesis Track)

CHAPTER V DUAL SPACES

Lebesgue Integration on Euclidean Space

Spectral theory for compact operators on Banach spaces

Philippe. Functional Analysis with Applications. Linear and Nonlinear. G. Ciarlet. City University of Hong Kong. siajtl

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

Overview of normed linear spaces

The weak topology of locally convex spaces and the weak-* topology of their duals

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

ANALYSIS TOOLS WITH APPLICATIONS

Mathematical Analysis

Notation. General. Notation Description See. Sets, Functions, and Spaces. a b & a b The minimum and the maximum of a and b

Index. C 0-semigroup, 114, 163 L 1 norm, 4 L norm, 5 L p spaces, 351 local, 362 ɛ-net, 24 σ-algebra, 335 Borel, 336, 338

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

Spectral Theory, with an Introduction to Operator Means. William L. Green

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first

Real Analysis Notes. Thomas Goller

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration?

Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide

Topics in Operator Theory

CONTENTS. 4 Hausdorff Measure Introduction The Cantor Set Rectifiable Curves Cantor Set-Like Objects...

Eberlein-Šmulian theorem and some of its applications

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

A note on the σ-algebra of cylinder sets and all that

The Way of Analysis. Robert S. Strichartz. Jones and Bartlett Publishers. Mathematics Department Cornell University Ithaca, New York

An introduction to some aspects of functional analysis

Folland: Real Analysis, Chapter 7 Sébastien Picard

Real Analysis: Part II. William G. Faris

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

7 About Egorov s and Lusin s theorems

Factorization of unitary representations of adele groups Paul Garrett garrett/

Compact operators on Banach spaces

Continuity of convex functions in normed spaces

Professor Carl Cowen Math Fall 17 PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

MATHS 730 FC Lecture Notes March 5, Introduction

4.4. Orthogonality. Note. This section is awesome! It is very geometric and shows that much of the geometry of R n holds in Hilbert spaces.

Functional Analysis (H) Midterm USTC-2015F haha Your name: Solutions

Introduction to Spectral Theory

Weak Topologies, Reflexivity, Adjoint operators

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

MTH 404: Measure and Integration

Functional Analysis, Stein-Shakarchi Chapter 1

Examples of Dual Spaces from Measure Theory

Spectral theorems for bounded self-adjoint operators on a Hilbert space

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Contents. Index... 15

16 1 Basic Facts from Functional Analysis and Banach Lattices

ABSTRACT ALGEBRA WITH APPLICATIONS

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich

Course Notes for Functional Analysis I, Math , Fall Th. Schlumprecht

FINITE-DIMENSIONAL LINEAR ALGEBRA

Boundedly complete weak-cauchy basic sequences in Banach spaces with the PCP

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Introduction to Infinite Dimensional Stochastic Analysis

In Chapter 14 there have been introduced the important concepts such as. 3) Compactness, convergence of a sequence of elements and Cauchy sequences,

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan

Elementary linear algebra

Recall that any inner product space V has an associated norm defined by

Chapter 1. Introduction

Topological vectorspaces

FUNCTIONAL ANALYSIS: NOTES AND PROBLEMS

MTH 503: Functional Analysis

Analysis Comprehensive Exam Questions Fall 2008

x n x or x = T -limx n, if every open neighbourhood U of x contains x n for all but finitely many values of n

M.PHIL. MATHEMATICS PROGRAMME New Syllabus (with effect from Academic Year) Scheme of the Programme. of Credits

MAA6617 COURSE NOTES SPRING 2014

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Problem Set 6: Solutions Math 201A: Fall a n x n,

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

Reminder Notes for the Course on Measures on Topological Spaces

Reflexivity of Locally Convex Spaces over Local Fields

Chapter II. Metric Spaces and the Topology of C

FRAMES AND TIME-FREQUENCY ANALYSIS

Transcription:

Christopher Heil Five Mini-Courses on Analysis Metrics, Norms, Inner Products, and Topology Lebesgue Measure and Integral Operator Theory and Functional Analysis Borel and Radon Measures Topological Vector Spaces October 25, 2010 Springer Berlin Heidelberg NewYork Hong Kong London Milan Paris Tokyo

Contents ANHA Series Preface.......................................... vii General Notation..............................................xxiii 1 Metrics, Norms, Inner Products, and Topology............ 1 1.1 Metrics and Convergence................................. 1 1.2 Norms and Seminorms................................... 2 1.2.1 Infinite Series in Normed Spaces..................... 4 1.2.2 Convexity........................................ 5 1.3 Examples of Banach Spaces............................... 6 1.3.1 The l p Spaces..................................... 6 1.3.2 Spaces of Continuous and Differentiable Functions..... 9 1.4 Inner Products.......................................... 12 1.5 Topology............................................... 16 1.5.1 Product Topologies................................ 18 1.6 Convergence and Continuity in Topological Spaces........... 19 1.6.1 Convergence...................................... 19 1.6.2 Continuity........................................ 22 1.6.3 Equivalent Norms................................. 24 1.7 Closed and Dense Sets................................... 26 1.8 Compactness............................................ 28 1.8.1 Compact Sets..................................... 28 1.8.2 Functions on Compact Sets......................... 30 1.8.3 Norms on Finite-Dimensional Spaces................. 31 1.9 Complete Sequences and a First Look at Schauder Bases..... 33 1.9.1 Span, Finite Independence, and Hamel Bases......... 34 1.9.2 Closed Span...................................... 35 1.9.3 Introduction to Schauder Bases..................... 37 1.9.4 Separable Banach Spaces........................... 38 1.10 Unconditional Convergence............................... 39 1.11 Orthogonality........................................... 42

vi Contents 1.11.1 Orthogonality and the Pythagorean Theorem......... 42 1.11.2 Orthogonal Direct Sums............................ 43 1.11.3 Orthogonal Projections and Orthogonal Complements. 43 1.12 Orthogonality and Complete Sequences.................... 45 1.13 Urysohn s Lemma....................................... 48 2 Lebesgue Measure and Integral............................ 51 2.1 Exterior Lebesgue Measure............................... 51 2.2 Lebesgue Measure....................................... 53 2.2.1 Definition and Basic Properties..................... 53 2.2.2 Equivalent Formulations of Measurability............. 56 2.2.3 Almost Everywhere................................ 58 2.2.4 Nonmeasurable Sets............................... 58 2.3 Measurable Functions.................................... 59 2.4 Convergence in Measure.................................. 62 2.5 The Lebesgue Integral................................... 63 2.5.1 Integration of Nonnegative Simple Functions.......... 63 2.5.2 Integration of Nonnegative Functions................ 64 2.5.3 The Monotone Convergence Theorem................ 65 2.5.4 Fatou s Lemma................................... 66 2.5.5 Integration of Real-Valued and Complex-Valued Functions........................................ 67 2.5.6 The Lebesgue Dominated Convergence Theorem...... 68 2.5.7 Relation to the Riemann Integral.................... 69 2.6 The L p Spaces.......................................... 70 2.6.1 Norm and Completeness........................... 70 2.6.2 On Abuses of Notation............................. 72 2.6.3 Convergence in L p (E).............................. 73 2.6.4 Dense Subsets of L p (E)............................ 74 2.6.5 The Hilbert Space L 2 (E)........................... 75 2.6.6 Local Integrability................................. 77 2.7 Repeated Integration.................................... 79 2.8 Functions of Bounded Variation........................... 81 2.8.1 Definition and Examples........................... 81 2.8.2 The Jordan Decomposition......................... 83 2.8.3 Differentiability of Functions of Bounded Variation.... 84 2.9 Singular Functions on the Real Line....................... 85 2.10 Absolutely Continuous Functions and the Banach Zarecki Theorem............................................... 87 2.10.1 Definition of Absolute Continuity.................... 87 2.10.2 Preparation for the Banach Zarecki Theorem......... 88 2.10.3 The Banach Zarecki Theorem....................... 91 2.11 The Lebesgue Differentiation Theorem..................... 93 2.12 The Fundamental Theorem of Calculus..................... 95

Contents vii 3 Operator Theory and Functional Analysis................. 99 3.1 Bounded Linear Operators on Normed Spaces............... 99 3.1.1 Equivalence of Bounded and Continuous Linear Operators........................................ 101 3.1.2 Isomorphisms..................................... 102 3.1.3 Eigenvalues and Eigenvectors....................... 103 3.1.4 Orthogonal Projections............................ 104 3.1.5 Multiplication Operators........................... 104 3.1.6 The Space B(X, Y )................................ 105 3.2 Integral Operators....................................... 108 3.2.1 Hilbert Schmidt Integral Operators.................. 110 3.2.2 Schur s Test...................................... 111 3.2.3 Convolution...................................... 112 3.3 Banach Algebras........................................ 112 3.4 The Dual of a Hilbert Space.............................. 114 3.5 The Dual of L p (E)...................................... 116 3.6 Adjoints of Operators on Hilbert Spaces.................... 117 3.6.1 Adjoints of Bounded Operators..................... 117 3.6.2 Adjoints of Unbounded Operators................... 118 3.6.3 Bounded Self-Adjoint Operators on Hilbert Spaces.... 119 3.6.4 Positive and Positive Definite Operators on Hilbert Spaces........................................... 121 3.7 Compact Operators on Hilbert Spaces...................... 123 3.7.1 Definition and Basic Properties..................... 123 3.7.2 Finite-Rank Operators............................. 125 3.7.3 Integral Operators with Square-Integrable Kernels..... 126 3.8 The Spectral Theorem for Compact Self-Adjoint Operators... 128 3.8.1 Existence of an Eigenvalue......................... 128 3.8.2 The Spectral Theorem............................. 129 3.9 Hilbert Schmidt Operators............................... 132 3.9.1 Definition and Basic Properties..................... 133 3.9.2 Singular Numbers and Schatten Classes.............. 134 3.9.3 Trace-Class Operators............................. 136 3.9.4 Hilbert Schmidt Integral Operators.................. 137 3.10 The Hahn Banach Theorem.............................. 139 3.10.1 Abstract Statement of the Hahn Banach Theorem..... 140 3.10.2 Corollaries of the Hahn Banach Theorem............. 140 3.10.3 Orthogonal Complements in Normed Spaces.......... 142 3.10.4 X and Reflexivity............................... 143 3.10.5 Adjoints of Operators on Banach Spaces............. 144 3.11 The Baire Category Theorem............................. 145 3.12 The Uniform Boundedness Principle....................... 147 3.13 The Open Mapping Theorem............................. 150 3.14 The Closed Graph Theorem.............................. 152 3.15 Schauder Bases......................................... 153

viii Contents 3.15.1 Continuity of the Coefficient Functionals............. 153 3.15.2 Minimal Sequences................................ 155 3.15.3 A Characterization of Schauder Bases................ 156 3.15.4 Unconditional Bases............................... 157 3.16 Weak and Weak* Convergence............................ 158 4 Borel and Radon Measures on the Real Line.............. 161 4.1 σ-algebras............................................. 161 4.2 Signed Measures........................................ 163 4.2.1 The Jordan Decomposition......................... 165 4.3 Positive Measures and Integration......................... 168 4.3.1 Basic Properties of Positive Measures................ 168 4.3.2 Borel Measurable Functions........................ 168 4.3.3 Integration of Nonnegative Functions................ 169 4.3.4 Integration of Arbitrary Functions................... 170 4.4 Signed Measures and Integration.......................... 172 4.5 Complex Measures....................................... 175 4.6 Fubini and Tonelli for Borel Measures...................... 179 4.7 Radon Measures......................................... 180 4.8 The Riesz Representation Theorem for Positive Functionals on C c (R)............................................... 182 4.8.1 Topologies on C c (R)............................... 183 4.8.2 Positive Linear Functionals on C c (R)................ 184 4.9 The Relation Between Radon and Borel Measures........... 186 4.10 The Dual of C 0 (R)...................................... 188 5 Topological Vector Spaces................................. 191 5.1 Motivation and Examples................................ 191 5.2 Topological Vector Spaces................................ 196 5.2.1 Base for a Topology............................... 196 5.2.2 Topological Vector Spaces.......................... 197 5.3 Topologies Induced by Families of Seminorms............... 198 5.3.1 Motivation....................................... 198 5.3.2 The Topology Associated with a Family of Seminorms. 199 5.3.3 The Convergence Criterion......................... 200 5.3.4 Continuity of the Vector Space Operations............ 202 5.3.5 Continuity Equals Boundedness..................... 203 5.4 Topologies Induced by Countable Families of Seminorms..... 205 5.4.1 Metrizing the Topology............................ 205 5.5 Tempered and Compactly Supported Distributions.......... 207 5.5.1 Tempered Distributions............................ 207 5.5.2 Compactly Supported Distributions.................. 208 5.6 Cc (R) and its Dual Space D (R).......................... 209 5.6.1 The Topology on Cc (R)........................... 210 5.6.2 The Space of Distributions......................... 212

Contents ix 5.6.3 Inclusions........................................ 214 5.7 The Weak and Weak* Topologies on a Normed Linear Space.. 217 5.7.1 The Weak Topology............................... 218 5.7.2 The Weak* Topology.............................. 219 5.8 Alaoglu s Theorem...................................... 220 5.8.1 Product Topologies................................ 220 5.8.2 Tychonoff s Theorem.............................. 221 5.8.3 Statement and Proof of Alaoglu s Theorem........... 221 5.8.4 Implications for Separable Spaces.................... 223 A Zorn s Lemma............................................. 227 Hints for Exercises and Additional Problems.................. 229 Index of Symbols.............................................. 245 References..................................................... 251 Index.......................................................... 255