Math 128A Spring 2003 Week 11 Solutions Burden & Faires 5.6: 1b, 3b, 7, 9, 12 Burden & Faires 5.7: 1b, 3b, 5 Burden & Faires 5.

Similar documents
9.6 Predictor-Corrector Methods

Math 128A Spring 2003 Week 12 Solutions

Initial-Value Problems for ODEs. Introduction to Linear Multistep Methods

multistep methods Last modified: November 28, 2017 Recall that we are interested in the numerical solution of the initial value problem (IVP):

Jim Lambers MAT 772 Fall Semester Lecture 21 Notes

Fourth Order RK-Method

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 18. HW 7 is posted, and will be due in class on 4/25.

COSC 3361 Numerical Analysis I Ordinary Differential Equations (II) - Multistep methods

5.6 Multistep Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods

Numerical Methods - Initial Value Problems for ODEs

Numerical Differential Equations: IVP

MTH 452/552 Homework 3

Applied Math for Engineers

Multistep Methods for IVPs. t 0 < t < T

Initial value problems for ordinary differential equations

HIGHER ORDER METHODS. There are two principal means to derive higher order methods. b j f(x n j,y n j )

Linear Multistep Methods I: Adams and BDF Methods

Mathematics for chemical engineers. Numerical solution of ordinary differential equations

Part IB Numerical Analysis

MATHEMATICAL METHODS INTERPOLATION

8.1 Introduction. Consider the initial value problem (IVP):

1 Error Analysis for Solving IVP

Solving Ordinary Differential equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Name of the Student: Unit I (Solution of Equations and Eigenvalue Problems)

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations

Scientific Computing: An Introductory Survey

CS520: numerical ODEs (Ch.2)

Chapter 5 Exercises. (a) Determine the best possible Lipschitz constant for this function over 2 u <. u (t) = log(u(t)), u(0) = 2.

Variable Step Size Differential Equation Solvers

Numerical Methods for the Solution of Differential Equations

MATH 312 Section 3.1: Linear Models

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

Solving Ordinary Differential Equations

CHAPTER 5: Linear Multistep Methods

Unit I (Testing of Hypothesis)

Module 4: Numerical Methods for ODE. Michael Bader. Winter 2007/2008

PARTIAL DIFFERENTIAL EQUATIONS

Differential Equations

Lecture 8: Calculus and Differential Equations

Lecture 8: Calculus and Differential Equations

Applied Numerical Analysis

sections June 11, 2009

Virtual University of Pakistan

Interpolating Accuracy without underlying f (x)

NUMERICAL ANALYSIS SYLLABUS MATHEMATICS PAPER IV (A)

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Page No.1. MTH603-Numerical Analysis_ Muhammad Ishfaq

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations

Chapter 10. Initial value Ordinary Differential Equations

MATH 350: Introduction to Computational Mathematics

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester

Ordinary differential equations - Initial value problems

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

Ordinary Differential Equations


System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Chap. 20: Initial-Value Problems

SOLUTION OF EQUATION AND EIGENVALUE PROBLEMS PART A( 2 MARKS)

Lecture 10: Linear Multistep Methods (LMMs)

Dynamic Modeling. For the mechanical translational system shown in Figure 1, determine a set of first order

=================~ NONHOMOGENEOUS LINEAR EQUATIONS. rn y" - y' - 6y = 0. lid y" + 2y' + 2y = 0, y(o) = 2, y'(0) = I

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by

STATISTICS AND NUMERICAL METHODS QUESTION I APRIL / MAY 2010

Numerical Initial Value Problems

Initial value problems for ordinary differential equations

Numerical Methods. Scientists. Engineers

Laplace Transform Problems

MATH 251 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam

FE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS

Numerical Methods for Differential Equations

On interval predictor-corrector methods

Fundamental Numerical Methods for Electrical Engineering

UNIT-II INTERPOLATION & APPROXIMATION

Phys 2025, First Test. September 20, minutes Name:

2 Numerical Methods for Initial Value Problems

Computational Methods

Math Numerical Analysis Homework #4 Due End of term. y = 2y t 3y2 t 3, 1 t 2, y(1) = 1. n=(b-a)/h+1; % the number of steps we need to take

Electrical Circuits Lab Series RC Circuit Phasor Diagram

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY DEPARTMENT OF SCIENCE & HUMANITIES STATISTICS & NUMERICAL METHODS TWO MARKS

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Numerical Methods for Engineers. and Scientists. Applications using MATLAB. An Introduction with. Vish- Subramaniam. Third Edition. Amos Gilat.

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations

Previous Year Questions & Detailed Solutions

Computational Methods CMSC/AMSC/MAPL 460. Ordinary differential equations

Do not turn over until you are told to do so by the Invigilator.

Homework #5 Solutions

MA2264 -NUMERICAL METHODS UNIT V : INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL. By Dr.T.Kulandaivel Department of Applied Mathematics SVCE

Numerical Solution of Hybrid Fuzzy Dierential Equation (IVP) by Improved Predictor-Corrector Method

16.7 Multistep, Multivalue, and Predictor-Corrector Methods

M.SC. PHYSICS - II YEAR

First-order transient

Transcription:

Math 128A Spring 2003 Week 11 Solutions Burden & Faires 5.6: 1b, 3b, 7, 9, 12 Burden & Faires 5.7: 1b, 3b, 5 Burden & Faires 5.8: 1b, 3b, 4 Burden & Faires 5.6. Multistep Methods 1. Use all the Adams-Bashforth methods to approximate the solutions to the following initial-value problem. In each case use exact starting values, and compare the results to the actual values. y = 1 + (t y) 2, 2 t 3, y(2) = 1, with h = 0.2; actual solution y(t) = t + 1 1 t. The exact starting values are given by: y(t 0 ) = 1.0000000 y(t 1 ) = 1.1909091 y(t 2 ) = 1.3666667 y(t 3 ) = 1.5307692 y(t 4 ) = 1.6857143 For the Adams-Bashforth two-step method, we have: w i+1 = w i + h 2 [3f(t i, w i ) f(t i 1, w i 1 )] for i 1. Thus we get: w 2 = 1.3648760 w 3 = 1.5281685 w 4 = 1.6826555 w 5 = 1.8300568 w 6 = 1.9716512 w 7 = 2.1084333 w 8 = 2.2411849 w 9 = 2.3705285 w 10 = 2.4969658. For the Adams-Bashforth three-step method, we have: w i+1 = w i + h 12 [23f(t i, w i ) 16f(t i 1, w i 1 ) + 5f(t i 2, w i 2 )] 1

for i 2. Thus we get: w 3 = 1.5312423 w 4 = 1.6863578 w 5 = 1.8341075 w 6 = 1.9758148 w 7 = 2.1125880 w 8 = 2.2452510 w 9 = 2.3744624 w 10 = 2.5007431. For the Adams-Bashforth four-step method, we have: w 3 = 1.5307692 w i+1 = w i + h 24 [55f(t i, w i ) 59f(t i 1, w i 1 ) + 37f(t i 2, w i 2 ) 9f(t i 3, w i 3 )] for i 3. Thus we get: w 3 = 1.5307692 w 4 = 1.6855637 w 5 = 1.8331397 w 6 = 1.9747539 w 7 = 2.1115202 w 8 = 2.2441958 w 9 = 2.3734479 w 10 = 2.4997728 For the Adams-Bashforth five-step method, we have: w 3 = 1.5307692 w 4 = 1.6857143 w i+1 = w i + h 720 [1901f(t i, w i ) 2774f(t i 1, w i 1 ) + 2616f(t i 2, w i 2 ) 1274f(t i 3, w i 3 ) + 251f(t i 4, w i 4 )] 2

for i 4. Thus we get: w 3 = 1.5307692 w 4 = 1.6857143 w 5 = 1.8333882 w 6 = 1.9750671 w 7 = 2.1118568 w 8 = 2.2445255 w 9 = 2.3737733 w 10 = 2.5000769 The actual results are as follows: y(t 0 ) = 1.0000000 y(t 1 ) = 1.1909091 y(t 2 ) = 1.3666667 y(t 3 ) = 1.5307692 y(t 4 ) = 1.6857143 y(t 5 ) = 1.8333333 y(t 6 ) = 1.9750000 y(t 7 ) = 2.1117647 y(t 8 ) = 2.2444444 y(t 9 ) = 2.3736842 y(t 10 ) = 2.5000000 3. Use each of the Adams-Bashforth methods to approximate the solution to the following initial-value problem. In each case use starting values obtained from the Runge-Kutta method of order four. Compare the results to the actual values. y = 1 + y/t + (y/t) 2, 1 t 3, y(1) = 0, with h = 0.2; actual solution y(t) = t tan(ln t). The Runge-Kutta method starting values are given by: y(t 0 ) = 0.0000000 y(t 1 ) = 0.2212428 y(t 2 ) = 0.4896817 y(t 3 ) = 0.8127527 y(t 4 ) = 1.1994386 Thus applying the methods, we get the results: 3

t i 2-step 3-step 4-step 5-step exact 1.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.2 0.2212457 0.2212457 0.2212457 0.2212457 0.2212428 1.4 0.4867550 0.4896842 0.4896842 0.4896842 0.4896817 1.6 0.8054881 0.8124317 0.8127522 0.8127522 0.8127527 1.8 1.1856931 1.1982110 1.1990422 1.1994320 1.1994386 2.0 1.6377944 1.6584313 1.6603060 1.6613179 1.6612818 2.2 2.1753785 2.2079987 2.2117448 2.2134792 2.2135018 2.4 2.8163947 2.8667672 2.8735320 2.8762776 2.8765514 2.6 3.5849181 3.6617484 3.6733266 3.6777236 3.6784753 2.8 4.5138420 4.6305275 4.6498937 4.6570033 4.6586651 3.0 5.6491203 5.8268008 5.8589944 5.8706101 5.8741000 7. The initial-value problem has solution y = e y, 0 t 0.20, y(0) = 1 y(t) = 1 ln(1 et). Applying the three-step Adams-Moulton method to this problem is equivalent to finding the fixed point w i+1 of g(w) = w i + h 24 [9ew + 19e wi 5e wi 1 + e wi 2 ]. a. With h = 0.01, obtain w i+1 by functional iteration for i = 2,..., 19 using exact starting values w 0, w 1, and w 2. At each step use w i to initially approximate w i+1. Will Newton s method speed the convergence over functional iteration? Proof. a. Using functional iteration we get: Using Newton s method, we get: t i w i iterations y(t i ) 0.00 1.0000000 0 1.0000000 0.01 1.0275591 0 1.0275591 0.02 1.0558993 0 1.0558993 0.03 1.0850661 4 1.0850661 0.04 1.1151093 4 1.1151093 0.05 1.1460831 4 1.1460831 0.06 1.1780471 4 1.1780470 0.07 1.2110665 4 1.2110664 0.08 1.2452136 4 1.2452135 0.09 1.2805681 4 1.2805679 0.10 1.3172184 4 1.3172182 0.11 1.3552633 4 1.3552631 0.12 1.3948131 4 1.3948128 0.13 1.4359917 4 1.4359913 0.14 1.4789390 4 1.4789386 0.15 1.5238140 4 1.5238134 0.16 1.5707977 4 1.5707970 0.17 1.6200982 4 1.6200973 0.18 1.6719560 4 1.6719548 0.19 1.7266507 4 1.7266493 0.20 1.7845111 4 1.7845092 4

t i w i iterations y(t i ) 0.00 1.0000000 0 1.0000000 0.01 1.0275591 0 1.0275591 0.02 1.0558993 0 1.0558993 0.03 1.0850661 3 1.0850661 0.04 1.1151093 3 1.1151093 0.05 1.1460831 3 1.1460831 0.06 1.1780471 3 1.1780470 0.07 1.2110665 3 1.2110664 0.08 1.2452136 3 1.2452135 0.09 1.2805681 3 1.2805679 0.10 1.3172184 3 1.3172182 0.11 1.3552633 3 1.3552631 0.12 1.3948131 3 1.3948128 0.13 1.4359917 3 1.4359913 0.14 1.4789390 3 1.4789386 0.15 1.5238140 3 1.5238134 0.16 1.5707977 3 1.5707970 0.17 1.6200983 3 1.6200973 0.18 1.6719560 3 1.6719548 0.19 1.7266508 3 1.7266493 0.20 1.7845111 3 1.7845092 So, with Newton s method, one less iteration is necessary at each step. 9. a. Derive Eq. (5.32) by using the Lagrange form of the interpolating polynomial. Derive Eq. (5.34) by using Newton s backward-difference form of the interpolating polynomial. a. Letting P (t) be the Lagrange form of the interpolating polynomial, we calculate: ti+1 y(t i+1 ) y(t i ) + t i ti+h P (t) dt [ (f(ti, y(t i )) f(t i 1, y(t i 1 )))t = y(t i ) + t i h + f(t ] i, y(t i ))h + f(t i 1, y(t i 1 ))t i f(t i, y(t i ))t i dt h = y(t i ) + 1 2h (f(t i, y(t i )) f(t i 1, y(t i 1 ))) ( (t i + h) 2 t 2 ) i + f(ti, y(t i ))h +f(t i 1, y(t i 1 ))t i f(t i, y(t i ))t i = y(t i ) + h 2 (3f(t i, y(t i )) f(t i 1, y(t i 1 ))) Letting P (t) be Newton s backward-difference form of the interpolating polynomial, we cal- 5

culate: ti+1 y(t i+1 ) y(t i ) + t i 3 = y(t i ) + k=0 3 ( ) ( 1) k s k f(t k i, y(t i ))h ds k=0 k f(t i, y(t i ))h( 1) k 1 0 ( ) s ds k [ = y(t i ) + h f(t i, y(t i )) + 1 2 f(t i, y(t i )) + 5 = y(t i ) + h { f(t i, y(t i )) + 1 2 [f(t i, y(t i )) f(t i 1, y(t i 1 ))] 12 2 f(t i, y(t i )) + 3 ] 8 3 f(t i, y(t i )) + 5 12 [f(t i, y(t i )) 2f(t i 1, y(t i 1 )) + f(t i 2, y(t i 2 ))] + 3 } 8 [f(t i, y(t i )) 3f(t i 1, y(t i 1 )) + 3f(t i 2, y(t i 2 )) f(t i 3, y(t i 3 ))] = y(t i ) + h 24 [55f(t i, y(t i )) 59f(t i 1, y(t i 1 )) + 37f(t i 2, y(t i 2 )) 9f(t i 3, y(t i 3 ))] 12. Derive Simpson s method by applying Simpson s rule to the integral y(t i+1 ) y(t i 1 ) = ti+1 t i 1 f(t, y(t)) dt. y(t i+1 ) y(t i 1 ) = ti+1 t i 1 f(t, y(t)) dt h 3 [f(t i 1, y(t i 1 )) + 4f(t i, y(t i )) + f(t i+1, y(t i+1 ))] Burden & Faires 5.7. Variable Step-Size Multistep Methods 1. Use the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance TOL = 10 4, hmax = 0.25, and hmin = 0.025 to approximate the solution to the given initial-value problem. Compare the results to the actual values. y = 1 + (t y) 2, 2 t 3, y(2) = 1; actual solution y(t) = t + 1/(1 t). Applying the Adams Variable Step-Size Predictor-Corrector Algorithm, we get the following results: 6

t i w i h i y(t i ) 2.00000000 1.00000000 0.00000000 1.00000000 2.06250000 1.12132350 0.06250000 1.12132353 2.12500000 1.23611106 0.06250000 1.23611111 2.18750000 1.34539468 0.06250000 1.34539474 2.25000000 1.45000191 0.06250000 1.45000000 2.31250000 1.55059834 0.06250000 1.55059524 2.37500000 1.64773110 0.06250000 1.64772727 2.43750000 1.74185207 0.06250000 1.74184783 2.53110962 1.87799224 0.09360962 1.87798852 2.62471924 2.00923157 0.09360962 2.00922828 2.71832886 2.13637101 0.09360962 2.13636808 2.81193849 2.26004764 0.09360962 2.26004338 2.90554811 2.38076971 0.09360962 2.38076472 2.99915773 2.49895243 0.09360962 2.49894707 2.99936830 2.49921568 0.00021057 2.49921033 2.99957886 2.49947891 0.00021057 2.49947355 2.99978943 2.49974214 0.00021057 2.49973678 3.00000000 2.50000535 0.00021057 2.50000000 3. Use the Adams Variable Step-Size Predictor-Corrector Algorithm with TOL = 10 6 to approximate the solution to the following initial-value problem: y = 1 + y/t + (y/t) 2, 1 t 3, y(1) = 0; actual solution y(t) = t tan(ln t). Applying the Adams Variable Step-Size Predictor-Corrector Algorithm, we get the following results: t w h y(t) 1.00000000 0.00000000 0.00000000 0.00000000 1.03703921 0.03773348 0.03703921 0.03773348 1.07407841 0.07688780 0.03703921 0.07688780 1.11111762 0.11750963 0.03703921 0.11750962 1.14815683 0.15964398 0.03703921 0.15964397 1.18519603 0.20333499 0.03703921 0.20333497 1.22223524 0.24862649 0.03703921 0.24862645 1.25927444 0.29556249 0.03703921 0.29556244 1.29631365 0.34418760 0.03703921 0.34418754 1.33335286 0.39454733 0.03703921 0.39454726 1.37039206 0.44668843 0.03703921 0.44668835 1.40743127 0.50065911 0.03703921 0.50065903 1.44447048 0.55650930 0.03703921 0.55650921 1.48150968 0.61429086 0.03703921 0.61429076 1.51854889 0.67405779 0.03703921 0.67405768 1.55558810 0.73586642 0.03703921 0.73586631 1.59262730 0.79977565 0.03703921 0.79977552 1.62966651 0.86584708 0.03703921 0.86584694 1.66670572 0.93414529 0.03703921 0.93414514 1.70374492 1.00473798 0.03703921 1.00473782 1.74078413 1.07769626 0.03703921 1.07769609 7

t w h y(t) 1.77782333 1.15309479 0.03703921 1.15309460 1.81486254 1.23101209 0.03703921 1.23101189 1.85190175 1.31153076 0.03703921 1.31153054 1.88894095 1.39473775 0.03703921 1.39473752 1.92598016 1.48072467 0.03703921 1.48072442 1.96301937 1.56958804 0.03703921 1.56958777 2.00005857 1.66142969 0.03703921 1.66142940 2.03709778 1.75635706 0.03703921 1.75635675 2.07413699 1.85448361 0.03703921 1.85448328 2.11117619 1.95592923 0.03703921 1.95592886 2.14821540 2.06082065 0.03703921 2.06082026 2.18525460 2.16929198 0.03703921 2.16929156 2.22229381 2.28148519 0.03703921 2.28148474 2.25933302 2.39755070 0.03703921 2.39755020 2.29637222 2.51764797 0.03703921 2.51764743 2.33341143 2.64194621 0.03703921 2.64194563 2.37045064 2.77062509 0.03703921 2.77062447 2.40748984 2.90387557 0.03703921 2.90387489 2.44452905 3.04190073 0.03703921 3.04190000 2.48156826 3.18491677 0.03703921 3.18491598 2.51860746 3.33315406 0.03703921 3.33315320 2.55564667 3.48685829 0.03703921 3.48685736 2.59268587 3.64629174 0.03703921 3.64629073 2.62360638 3.78397753 0.03092051 3.78397647 2.65452689 3.92602442 0.03092051 3.92602332 2.68544740 4.07261602 0.03092051 4.07261487 2.71636790 4.22394689 0.03092051 4.22394566 2.74728841 4.38022329 0.03092051 4.38022199 2.77820892 4.54166415 0.03092051 4.54166276 2.80912943 4.70850200 0.03092051 4.70850052 2.84004993 4.88098407 0.03092051 4.88098249 2.86589042 5.02964820 0.02584049 5.02964655 2.89173091 5.18260036 0.02584049 5.18259865 2.91757139 5.34001213 0.02584049 5.34001036 2.94341188 5.50206466 0.02584049 5.50206279 2.96925237 5.66894925 0.02584049 5.66894729 2.99509285 5.84086817 0.02584049 5.84086610 2.99631964 5.84915884 0.00122679 5.84915677 2.99754643 5.85746136 0.00122679 5.85745929 2.99877321 5.86577576 0.00122679 5.86577369 3.00000000 5.87410206 0.00122679 5.87409998 5. An electrical circuit consists of a capacitor of constant capacitance C = 1.1 farads in series with a resistor of constant resistance R 0 = 2.1 ohms. A voltage E(t) = 110 sin t is applied at time t = 0. When the resistor heats up, the resistance becomes a function of the current i, and the differential equation for i(t) becomes ( 1 + 2k ) di i R 0 R(t) = R 0 + ki, where k = 0.9, dt + 1 R 0 C i = 1 R 0 C 8 de dt.

Find i(2), assuming that i(0) = 0. Running the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance 10 3 with minimum and maximum mesh size given by 0.001 and 0.5 respectively, we find that i(2) 8.211. Burden & Faires 5.8. Extrapolation Methods 1. Use the Extrapolation Algorithm with tolerance TOL = 10 4, hmax = 0.25, and hmin = 0.05 to approximate the solutions to the following initial-value problems. Compare the results to the actual values. y = 1 + (t y) 2, 2 t 3, y(2) = 1; actual solution y(t) = t + 1/(1 t). Applying the Extrapolation Algorithm, we get the following results: t i w i h i k i y(t i ) 2.25000000 1.44999987 0.25000000 3 1.45000000 2.50000000 1.83333321 0.25000000 3 1.83333333 2.75000000 2.17857133 0.25000000 3 2.17857143 3.00000000 2.49999993 0.25000000 3 2.50000000 3. Use the Extrapolation Algorithm with TOL = 10 6, hmax = 0.5, and hmin = 0.05 to approximate the solutions to the following initial-value problems. Compare the results to the actual values. y = 1 + y/t + (y/t) 2, 1 t 3, y(1) = 0; actual solution y(t) = t tan ln t. Applying the Extrapolation Algorithm, we get the following results: t i w i h i k i y(t i ) 1.50000000 0.64387537 0.50000000 4 0.64387533 2.00000000 1.66128182 0.50000000 5 1.66128176 2.50000000 3.25801550 0.50000000 5 3.25801536 3.00000000 5.87410027 0.50000000 5 5.87409998 4. Let P (t) be the number of individuals in a population at time t, measured in years. If the average birth rate b is constant and the average death rate d is proportional to the size of the population (due to overcrowding), then the growth rate of the population is given by the logistic equation dp (t) dt = bp (t) k[p (t)] 2, where d = kp (t). Suppose P (0) = 50, 976, b = 2.9 10 2, and k = 1.4 10 7. Find the population after 5 years. The population after 5 years is approximately 57.7998. 9