Anomalously localized electronic states in three-dimensional disordered samples

Similar documents
Application of the Lanczos Algorithm to Anderson Localization

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

Introduction to Theory of Mesoscopic Systems

Department of Electrical and Electronic Engineering, Ege University, Bornova 3500, Izmir, Turkey

Numerical Analysis of the Anderson Localization

Anderson Localization Looking Forward

arxiv: v2 [cond-mat.dis-nn] 28 Oct 2015

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

Wave function multifractality at Anderson localization transitions. Alexander D. Mirlin

Mott metal-insulator transition on compressible lattices

Enhancement of superconducting Tc near SIT

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008

Time Evolving Block Decimation Algorithm

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 29 Mar 2006

arxiv: v1 [hep-lat] 30 Oct 2014

Lecture 8 Nature of ensemble: Role of symmetry, interactions and other system conditions: Part II

Localization and electron-phonon interactions in disordered systems

Solvable model for a dynamical quantum phase transition from fast to slow scrambling

arxiv: v3 [cond-mat.mes-hall] 27 Jan 2008

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care)

Freed by interaction kinetic states in the Harper model

Theory of Mesoscopic Systems

Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field

Anderson localization in a random correlated energy landscape

FRACTAL DIMENSIONS FOR CERTAIN CRITICAL RANDOM MATRIX ENSEMBLES. Eugène Bogomolny

Graphene and Planar Dirac Equation

Numerical study of localization in antidot lattices

Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains

Why Hyperbolic Symmetry?

Renormalization Group for the Two-Dimensional Ising Model

Computing Spectra of Linear Operators Using Finite Differences

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems

Delocalization for Schrödinger operators with random Dirac masses

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 14 Jul 2003

Quantum Lattice Models & Introduction to Exact Diagonalization

Numerical estimates of critical exponents of the Anderson transition. Keith Slevin (Osaka University) Tomi Ohtsuki (Sophia University)

Cluster Extensions to the Dynamical Mean-Field Theory

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010

Feshbach-Schur RG for the Anderson Model

Lecture 4. Diffusing photons and superradiance in cold gases

OPTIMAL PERTURBATION OF UNCERTAIN SYSTEMS

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

DELFT UNIVERSITY OF TECHNOLOGY

PHYSICAL REVIEW LETTERS

Electrons and Phonons on the Square Fibonacci Tiling

Multifractality in simple systems. Eugene Bogomolny

arxiv: v2 [cond-mat.stat-mech] 24 Aug 2014

Clusters and Percolation

Newton s Method and Localization

Q SON,' (ESTABLISHED 1879L

Prediction of Great Japan Earthquake 11 March of 2011 by analysis of microseismic noise. Does Japan approach the next Mega-EQ?

arxiv: v1 [cond-mat.str-el] 21 Mar 2012

Today: 5 July 2008 ٢

Berry s phase in Hall Effects and Topological Insulators

Computing Energy Levels of the Confined Hydrogen Atom

Anderson átmenet a kvark-gluon plazmában

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain

Part III: Impurities in Luttinger liquids

arxiv: v1 [cond-mat.dis-nn] 31 Aug 2011

arxiv: v1 [hep-lat] 19 Jul 2009

Disordered Quantum Systems

Asymptotic distribution of eigenvalues of Laplace operator

High-Temperature Criticality in Strongly Constrained Quantum Systems

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

VIII.B Equilibrium Dynamics of a Field

Purely electronic transport in dirty boson insulators

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems

Spin liquid phases in strongly correlated lattice models

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice

The Hubbard model for the hydrogen molecule

Non-equilibrium phase transitions

OPTIMAL PERTURBATION OF UNCERTAIN SYSTEMS

Multifractal Properties of the Fibonacci Chain

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

1. SYSTEM GEOMETRY AND PREPARATION FIG. S1.

The Simple Harmonic Oscillator

Iterative Methods for Solving A x = b

On the concentration of eigenvalues of random symmetric matrices

Interplay of micromotion and interactions

Subgradient methods for huge-scale optimization problems

Block Lanczos Tridiagonalization of Complex Symmetric Matrices

Metal - Insulator transitions: overview, classification, descriptions

Topological Kondo Insulators!

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

(De)-localization in mean-field quantum glasses

RITZ VALUE BOUNDS THAT EXPLOIT QUASI-SPARSITY

Lecture notes for /12.586, Modeling Environmental Complexity. D. H. Rothman, MIT September 24, Anomalous diffusion

Non-equilibrium Dynamics of One-dimensional Many-body Quantum Systems. Jonathan Karp

Signatures of Phase Transition in Wave Dynamics of Complex Systems

SSH Model. Alessandro David. November 3, 2016

Size Effect of Diagonal Random Matrices

This ensures that we walk downhill. For fixed λ not even this may be the case.

Topological insulator (TI)

Multilevel Preconditioning and Adaptive Sparse Solution of Inverse Problems

arxiv:cond-mat/ v4 [cond-mat.dis-nn] 23 May 2001

Lecture 3: Huge-scale optimization problems

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

Transcription:

Anomalously localized electronic states in three-dimensional disordered samples Philipp Cain and Michael Schreiber Theory of disordered systems, Institute of Physics, TU Chemnitz CompPhys07 November 30 2007

Motivation Anomalously localized states Anomalously localized states (ALS) ALS originate from statistical fluctuations of the disorder potential. Even for weak average disorder specific local disorder configurations lead to states that are localized in a finite region. ALS in the metallic regime can be neglected for infinite system because of their point-like spectra. [V. Uski et al., PRB 62, R7699 (2000)] ALS at the transition regime can lead to deviations in the critical properties even for infinite system size [H. Obuse and K. Yakubo, PRB 69, 125301 (2004)] Quantitative definition of ALS required. P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 2 / 19

Anderson Model of Localization Anderson Model of Localization Anderson Model of Localization Non-interacting electrons in a disordered energy landscape [P. W. Anderson, Phys. Rev. 109, 1492 (1958)] H = N ɛ i i i + t i,j i j. <i,j> i=1 Random onsite energies ɛ i [ W 2, W ] 2 describe potential disorder. Nearest-neighbor hopping integrals t i,j = 1 set energy scale and boundary conditions (here periodic). Disorder induced transition from metal (delocalization) to insulator (localization) at disorder strength W c = 16.5. P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 3 / 19

Anderson Model of Localization Anderson Model of Localization Density of States Mobility edge E c separates extended states in the band center from localized states in the tails. When approaching the transition (W W c ) all states become localized (E c 0). 0.08 0.06 W=10 W=W c =16.5 W=25 ρ(e) 0.04 0.02 E c 0-20 -10 0 10 20 E P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 4 / 19

Anderson Model of Localization Eigenvalues and Eigenfunctions Numerical methods Efficient diagonalization of large sparse matrices. Full spectrum very expensive (time,memory). Therefore only selected Eigenvalues and Eigenfunctions. For a long time Cullum/Willoughby implementation of the Lanczos algorithm state of the art (2000: 14 critical wave functions for N = 111 3 took 27 days on a XP1000 667 Mhz). Only recently more efficient Jacobi-Davidson method with multilevel incomplete LU preconditioning [JADAMILU] (2007: 20 critical wave functions for N = 120 3 take 1 hour on a Opteron 8216 2.4 Ghz). Huge memory requirements. system size N 40 3 80 3 120 3 memory in byte 500K 3.9M 13.2M # of wave functions 1600 1000 1040 P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 5 / 19

Identifying ALS Investigating the wave function Distribution of wave function amplitudes 1 µ 1000 1/2 mean µ mean 1000 µ mean 1000 3/2 µ mean f(µ) 0.8 0.6 0.4 f(µ) = µ j <µ µ j with µ j = Ψ j 2. 0.2 ALS MS 0-7 -6-5 -4-3 -2-1 0 log 10 (µ) 54 from the 1040 critical states for N = 120 3. P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 6 / 19

Identifying ALS ALS vs. MS Investigating the wave function µj > µmean ALS MS P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 7 / 19

Identifying ALS Investigating the wave function ALS vs. MS µ j > 1000µ mean ALS MS P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 8 / 19

Identifying ALS Investigating the wave function ALS vs. MS µ j > 1000µ mean ALS MS P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 9 / 19

Identifying ALS Investigating the wave function ALS vs. MS µ j > 1000 3 µ mean ALS # of µ i > ALS MS µ mean 17103 96622 1000 µmean 1442 7810 1000 µ mean 111 142 1000 3 µmean 7 0 P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 10 / 19

Identifying ALS Multifractal correlations Multifractality Divergence of the correlation length at the transition implies scale invariant critical wave function multifractal (MF) properties. Consider a local box measure for box width L b and define µ i (L b ) = j box(i) Ψ j 2 Z q (L b ) = i µq i (L b) For a MF wave function (MS) one observes a power law with mass exponent τ(q). Z q (L b ) L τ(q) b P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 11 / 19

Identifying ALS Multifractal correlations MF correlations I Study general MF correlation function M q (L b, r, L) µ q i (L b)µ q i+r (L b) L where. L is the average over all pairs of boxes with fixed distance r within system of width L. Employing scaling behavior it follows [M. Janssen, Int. J. Mod. Phys. B 8, 943 (1994)] M q (L b, r, L) L x(q) b L y(q) r z(q). P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 12 / 19

Identifying ALS Multifractal correlations MF correlations II Restrict choice to special cases for fixed system width L where: [H. Obuse and K. Yakubo, PRB 69, 125301 (2004)] r = 0: L b = 1: M q (L b ) M q (L b, r = 0, L) L x(q) b M q (r) M q (L b = 1, r, L) r z(q) L d+τ(2q) b Influence of ALS should result in observable deviations from scaling. Variances Γ of the correlation exponents obtained from the power-law fit gives quantitative measure for each wave function Γ = Γ z + αγ τ where the α compensates the different mean values of Γ z and Γ τ. Suitable limit Γ separates ALS (Γ > Γ ) from MS (Γ Γ ). P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 13 / 19

Identifying ALS Multifractal correlations Multifractal correlation functions M 2 (L b ) and M 2 (r) -12-14 Γ=0.64 0-17 Γ=0.08 0 log 10 M 2 (r) -16-18 -2 log 10 M 2 (L b ) -4 log 10 M 2 (r) -18-19 -5-10 log 10 M 2 (L b ) -20-6 -22 0.5 1 1.5 2 log 10 r, log 10 L b -8-20 0.5 1 1.5 2 log 10 r, log 10 L b -15 ALS MS P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 14 / 19

Identifying ALS Distribution of the variance Γ Multifractal correlations 5 P(Γ) 4 3 2 Γ=0.15 Γ=0.20 Γ=0.25 120 100 80 60 40 30 20 1 0 0 0.2 0.4 0.6 0.8 Γ [H. Obuse and K. Yakubo, PRB 69, 125301 (2004)] P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 15 / 19

Influence of ALS MF exponent z Computation of z(q) Investigate scaling relation [M. Janssen, Int. J. Mod. Phys. B 8, 943 (1994)] z(q)=d+2τ(q) τ(2q) derived from asymptotic behavior (vanishing r = L b vs. large r = L) of M q (r, L b, L) µ q i (L b)µ q i+r (L b) L Lx(q) b L y(q) r z(q). Compare correlation exponent z(q) calculated from M q (r) r z(q) with z(q) obtained from the mass exponent τ(q) as computed from M q (L b ) L 2τ(q) b. P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 16 / 19

Comparison of z(q) Influence of ALS MF exponent z 3 z(q) 2 1 z Q (q) z R (q) all states Γ< 0.5 Γ< 0.4 Γ< 0.3 0 0 1 2 3 q [H. Obuse and K. Yakubo, J. Phys. Soc. Japan, 73, 2164 (2004)] Significant deviations between different methods for q > 2. For q > 2.5 value exceeds theoretical upper limit z(q) < 3 even for smallest Γ. P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 17 / 19

Influence of ALS Correlation Dimension D 2 Fluctuation of the Correlation Dimension D 2 Definition: Z 2 (L b ) L D 2 b thus D 2 = τ(2) 0.7 2.0 width P(D 2 ) 0.6 0.5 0.4 all states Γ< 0.5 Γ< 0.4 Γ< 0.3 0.01 0.03 0.05 L -1 20 30 40 60 80 100 120 1.5 1.0 P(D 2 ) 0 0.5 1 1.5 2 D 2 0.0 ALS lead to finite width for L 0.5 [H. Obuse and K. Yakubo, PRB 69, 125301 (2004)] P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 18 / 19

Conclusion Conclusion ALS affect critical properties at the delocalization-localization transition in the 3D Anderson model of localization. Influence of ALS less pronounced as for the 2D SU(2) model. For better statistics are more critical states and more disorder realizations required. higher numerical effort for 3D in comparison to 2D. P. Cain et al (TU Chemnitz) ALS in 3D disordered samples CompPhys07 Nov2007 19 / 19