Chapter 8 Potential energy and conservation of energy

Similar documents
Spring Force and Power

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

Chapter 8: Potential Energy and The Conservation of Total Energy

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

EMU Physics Department

Conservation of Energy

Name: SID: Discussion Session:

Chapter 7. Potential Energy and Conservation of Energy

Work and Energy (Work Done by a Varying Force)

Chapter 07: Kinetic Energy and Work

PHYS 1441 Section 002 Lecture #15

Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8)

Chapter Seven - Potential Energy and Conservation of Energy

You will analyze the motion of the block at different moments using the law of conservation of energy.

Electrochemical Thermodynamics. Interfaces and Energy Conversion

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Chapter 8. Potential Energy and Conservation of Energy

Chapter 3 and Chapter 4

Uniform Circular Motion

PHYS 1441 Section 002 Lecture #16

CHAPTER 8 Potential Energy and Conservation of Energy

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

4. Eccentric axial loading, cross-section core

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Energy and Energy Transfer

Physics 207, Lecture 13, Oct. 15. Energy

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6.

13.4 Work done by Constant Forces

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

CENTROID (AĞIRLIK MERKEZİ )

Torsion, Thermal Effects and Indeterminacy

Quiz: Experimental Physics Lab-I

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

1 Which of the following summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum?

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.

Work is the change in energy of a system (neglecting heat transfer). To examine what could

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

First, we will find the components of the force of gravity: Perpendicular Forces (using away from the ramp as positive) ma F

Final Exam - Review MATH Spring 2017

PhysicsAndMathsTutor.com

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ

Introduction to Numerical Integration Part II

Part I: Basic Concepts of Thermodynamics

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

Physics 2135 Exam 1 February 14, 2017

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

Conservation of Energy

Haddow s Experiment:

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

Spring 2002 Lecture #13

KINETICS OF RIGID BODIES PROBLEMS

AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power

Lecture 13 - Linking E, ϕ, and ρ

ORDINARY DIFFERENTIAL EQUATIONS

in state i at t i, Initial State E = E i

PHYS 2421 Fields and Waves

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10.

Operations with Polynomials

Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk.

Chapter 6 Notes, Larson/Hostetler 3e

JURONG JUNIOR COLLEGE

PHYSICS 211 MIDTERM I 21 April 2004

Fundamental Theorem of Calculus

Lecture 22: Potential Energy

Physics 131: Lecture 16. Today s Agenda

PHYS Summer Professor Caillault Homework Solutions. Chapter 2

DIRECT CURRENT CIRCUITS

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Week 6, Chapter 7 Sect 1-5

Exam 1: Tomorrow 8:20-10:10pm

5.3 The Fundamental Theorem of Calculus

_3-----"/- ~StudI_G u_id_e_-..,...-~~_~

3.1 Exponential Functions and Their Graphs

KEY. Physics 106 Common Exam 1, Spring, 2004

v v at 1 2 d vit at v v 2a d

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force?

Review of linear algebra. Nuno Vasconcelos UCSD

ψ ij has the eigenvalue

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

Version 001 HW#6 - Electromagnetic Induction arts (00224) 1 3 T

a) No books or notes are permitted. b) You may use a calculator.

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

Chapter 6 Continuous Random Variables and Distributions

Physics Honors. Final Exam Review Free Response Problems

Narayana IIT Academy

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1

13 Design of Revetments, Seawalls and Bulkheads Forces & Earth Pressures

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:

Transcription:

Chpter 8 Potentl energy nd conservton o energy I. Potentl energy Energy o congurton II. Wor nd potentl energy III. Conservtve / Non-conservtve orces IV. Determnng potentl energy vlues: - Grvttonl potentl energy - Elstc potentl energy I. V. Conservton o hncl energy VI. Eternl wor nd erml energy VII. Eternl orces nd nternl energy chnges VIII. Power I. Potentl energy Energy ssocted w e rrngement o system o objects t eert orces on one noer. nts: J Emples: - Grvttonl potentl energy: ssocted w e stte o seprton between objects whch cn ttrct one noer v e grvttonl orce. - Elstc potentl energy: ssocted w e stte o compresson/etenson o n elstc object. II. Wor nd potentl energy I tomto rses grvttonl orce trnsers energy rom tomto s netc energy to e grvttonl potentl energy o e tomto-er system. I tomto lls down grvttonl orce trnsers energy rom e grvttonl potentl energy to e tomto s netc energy.

W lso vld or elstc potentl energy Sprng compresson s Sprng orce does W on bloc energy trnser rom netc energy o e bloc to potentl elstc energy o e sprng. Sprng etenson s Sprng orce does +W on bloc energy trnser rom potentl energy o e sprng to netc energy o e bloc. Generl: - System o two or more objects. - orce cts between prtcle n e system nd e rest o e system. - When system congurton chnges orce does wor on e object W trnserrng energy between KE o e object nd some oer orm o energy o e system. - When e congurton chnge s reversed orce reverses e energy trnser, dong W. III. Conservtve / Nonconservtve orces - I W W lwys conservtve orce. Emples: Grvttonl orce nd sprng orce ssocted potentl energes. - I W W nonconservtve orce. Emples: Drg orce, rctonl orce KE trnserred nto erml energy. Non-reversble process. - Therml energy: Energy ssocted w e rndom movement o toms nd molecules. Ths s not potentl energy.

- Conservtve orce: The net wor t does on prtcle movng round every closed p, rom n ntl pont nd en bc to t pont s zero. - The net wor t does on prtcle movng between two ponts does not depend on e prtcle s p. Conservtve orce W b, W b, Proo: W b, + W b, W b, -W b, W b, - W b, W b, W b, IV. Determnng potentl energy vlues W F d Force F s conservtve Grvttonl potentl energy: y y mg dy mg[ y] y mg y y mg y y Chnge n e grvttonl potentl energy o e prtcle-er system., y y mgy Reerence congurton The grvttonl potentl energy ssocted w prtcle-er system depends only on prtcle s vertcl poston y reltve to e reerence poston y, not on e horzontl poston. Elstc potentl energy: d [ ] Chnge n e elstc potentl energy o e sprng-bloc system. Reerence congurton when e sprng s t ts reled leng nd e bloc s t., Remember! Potentl energy s lwys ssocted w system. V. Conservton o hncl energy Mechncl energy o system: Sum o ts potentl nd netc K energes. 3

E + K ssumptons: W K W - Only conservtve orces cuse energy trnser wn e system. - The system s solted rom ts envronment No eternl orce rom n object outsde e system cuses energy chnges nsde e system. K + K K + K + K + K + - In n solted system where only conservtve orces cuse energy chnges, e netc energy nd potentl energy cn chnge, but er sum, e hncl energy o e system cnnot chnge. - When e hncl energy o system s conserved, we cn relte e sum o netc energy nd potentl energy t one nstnt to t t noer nstnt wout consderng e ntermedte moton nd wout ndng e wor done by e orces nvolved. y E constnt E K + K + K + Potentl energy curves Fndng e orce nlytclly: d W F F D moton d - The orce s e negtve o e slope o e curve versus. - The prtcle s netc energy s: K E 4

Turnng pont: pont t whch e prtcle reverses ts moton K. K lwys K.5mv Emples: E 5J5J+K K < E 5J >5J+K K< mpossble Equlbrum ponts: where e slope o e curve s zero F -F d /d -F /d -F Slope Equlbrum ponts E, E, E,3 Emple: 5 E, 4J4J+K K nd lso F 5 neutrl equlbrum >>, 5 >> 4 E, 3J 3J+K K Turnng ponts 3 K, F prtcle sttonry nstble equlbrum 4 E,3 JJ+K K, F, t cnnot move to > 4 or < 4, snce en K< Stble equlbrum 5

6 Revew: Potentl energy W - - The zero s rbtrry Only potentl energy derences hve physcl menng. - The orce D s gven by: F -d/d - The potentl energy s sclr uncton o e poston. P. The orce between two toms n dtomc molecule cn be represented by e ollowng potentl energy uncton: 6 where nd re constnts. Clculte e orce F [ ] + 7 3 7 6 3 5 6 d d F Mnmum vlue o. [ ] 7 3 mn F d d s ppro. e energy necessry to dssocte e two toms.

VI. Wor done on system by n eternl orce Wor s energy trnser to or rom system by mens o n eternl orce ctng on t system. When more n one orce cts on system er net wor s e energy trnserred to or rom e system. No Frcton: Remember! Frcton: W K+ Et. orce K+ only when: - System solted. - No et. orces ct on system. - ll nternl orces re conservtve. F v v m + d.5 v v / d m F v v Fd d m v d W Fd K + d v Fd mv mv + d Generl: W Fd + d Emple: loc sldng up rmp. Therml energy: d Frcton due to cold weldng between two surces. s e bloc sldes over e loor, e sldng cuses terng nd reormng o e welds between e bloc nd e loor, whch mes e bloc-loor wrmer. Wor done on system by n eternl orce, rcton nvolved W Fd + 7

VI. Conservton o energy Totl energy o system E hncl + E erml + E nternl - The totl energy o system cn only chnge by mounts o energy trnserred rom or to e system. W + + Epermentl lw E nt -The totl energy o n solted system cnnot chnge. There cnnot be energy trnsers to or rom t. Isolted system: + + nt In n solted system we cn relte e totl energy t one nstnt to e totl energy t noer nstnt wout consderng e energes t ntermedte sttes. Emple: Trolley pole jumper Run Internl energy muscles gets trnserred nto netc energy. Jump/scent Knetc energy trnserred to potentl elstc energy trolley pole deormton nd to grvttonl potentl energy 3 Descent Grvttonl potentl energy gets trnserred nto netc energy. 8

VII. Eternl orces nd nternl energy chnges Emple: ster pushes hersel wy rom rlng. There s orce F on her rom e rlng t ncreses her netc energy. One prt o n object ster s rm does not move le e rest o body. Internl energy trnser rom one prt o e system to noer v e eternl orce F. ochemcl energy rom muscles trnserred to netc energy o e body. W F, et K Fcosϕ d Non solted system K + W F, et Fd cosϕ Fd cosϕ Chnge n system s hncl energy by n eternl orce Proo: v v + d.5m Mv Mv Md K F cosϕ d VIII. Power verge power: P vg t Instntneous power: de P dt 9

6. In e gure below, bloc sldes long p t s wout rcton untl e bloc reches e secton o leng L.75m, whch begns t heght hm. In t secton, e coecent o netc rcton s.4. The bloc psses rough pont w speed o 8m/s. Does t rech pont where e secton o rcton ends? I so, wht s e speed ere nd not, wht gretest heght bove pont does t rech? N mg cos3 8.5m mg N µ N.48.5m 3.4m C Only conservtve orces K mv + K C + C mvc + mghc vc 5m / s The netc energy n C turns nto erml nd potentl energy loc stops. K.5mv.4m c K mgy + d.4m mg d sn 3 + 3.4md d.49 meters c C c d > L.75m loc reches Isolted system.4m.5mv + 3.67m +.5m v 3.5m / s + + K + K + + L.4m.5mv + mg y y + µ mglcos3.5mv + mglsn 3 + µ mglcos3 c C C 9. mssless rgd rod o leng L hs bll o mss m ttched to one end. The oer end s pvoted n such wy t e bll wll move n vertcl crcle. Frst, ssume t ere s no rcton t e pvot. The system s lunched downwrd rom e horzontl poston w ntl speed v. The bll just brely reches pont D nd en stops. Derve n epresson or v n terms o L, m nd g. b Wht s e tenson n e rod when e bll psses rough? c lttle grl s plced on e pvot to ncrese e rcton ere. Then e bll just brely reches C when lunched rom w e sme speed s beore. Wht s e decrese n hncl energy durng s moton? d Wht s e decrese n hncl energy by e tme e bll nlly comes to rest t ter severl osclltons? K ; D K + K + mgl mv v c v W d c + gl b F m T mg v m T mg T m v L L + K + K cent mv mgl + mv gl + gl v v c + g gl T 5mg y v D L T F c mg C The derence n heghts or n grvttonl potentl energes between e postons C reched by e bll when ere s rcton nd D durng e rctonless movement Is gong to be e loss o hncl energy whch goes nto erml energy. c mgl d The derence n heght between nd D s L. The totl loss o hncl energy whch ll goes nto erml energy s: mgl

. 3g slo hngs 3m bove e ground. Wht s e grvttonl potentl energy o e slo-er system we te e reerence pont y to be t e ground? I e slo drops to e ground nd r drg on t s ssumed to be neglgble, wht re b e netc energy nd c e speed o e slo just beore t reches e ground? K + K + b K 94.J ground ; K mgh 3.g9.8m / s 3m 94.J c K mv v K m 7.67m / s 3. metl tool s shrpen by beng held gnst e rm o wheel on grndng mchne by orce o 8N. The rctonl orces between e rm nd e tool grnd smll peces o e tool. The wheel hs rdus o cm nd rottes t.5 rev/s. The coecent o netc rcton between e wheel nd e tool s.3. t wht rte s energy beng trnserred rom e motor drvng e wheel nd e tool to e netc energy o e mterl rown rom e tool? v F8N rev π.m v.5 3.4m / s P v 57.6N 3.4m / s 8W s rev Pmotor 8W µ N µ F.38 N 57.6N Power dsspted by rcton Power sup pled motor 8. bloc w netc energy o 3J s bout to collde w sprng t ts reled leng. s e bloc compresses e sprng, rctonl orce between e bloc nd loor cts on e bloc. The gure below gves e netc energy o e bloc K nd e potentl energy o e sprng s uncton o e poston o e bloc, s e sprng s compressed. Wht s e ncrese n erml energy o e bloc nd e loor when e bloc reches poston. m nd b e sprng reches ts mmum compresson? Isolted system.m E, E b K 3J Grph : E K, K 3J 3J 7J, m K 3J E J, 4J 3J 6J + 7J + v K.m, 3J 3J 4J 6J mg N

. g bloc s pushed gnst sprng w sprng constnt 5 N/m compressng t cm. ter e bloc s relesed, t trvels long rctonless horzontl surce nd 45º nclne plne. Wht s e mmum heght reched by s bloc?