Contents. 1. Evaporation

Similar documents
EVAPORATION GEOG 405. Tom Giambelluca

Global Water Cycle. Surface (ocean and land): source of water vapor to the atmosphere. Net Water Vapour Flux Transport 40.

Evapotranspiration. Andy Black. CCRN Processes Workshop, Hamilton, ON, Sept Importance of evapotranspiration (E)

Evapotranspiration. Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often?

Evapotranspiration: Theory and Applications

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND

Estimating Evaporation : Principles, Assumptions and Myths. Raoul J. Granger, NWRI

Lecture notes: Interception and evapotranspiration

1 The Richardson Number 1 1a Flux Richardson Number b Gradient Richardson Number c Bulk Richardson Number The Obukhov Length 3

Atmospheric Sciences 321. Science of Climate. Lecture 14: Surface Energy Balance Chapter 4

S. J. Schymanski (Referee) 1 Summary

Physical Aspects of Surface Energy Balance and Earth Observation Systems in Agricultural Practice

Lei Zhao. F&ES Yale University

1 Introduction to Governing Equations 2 1a Methodology... 2

METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance. Spring Semester 2011 February 8, 10 & 14, 2011

+ Validation of a simplified land surface model and

This is the first of several lectures on flux measurements. We will start with the simplest and earliest method, flux gradient or K theory techniques

ONE DIMENSIONAL CLIMATE MODEL

Assimilation of satellite derived soil moisture for weather forecasting

Thermal Crop Water Stress Indices

Radiation, Sensible Heat Flux and Evapotranspiration

Manoa Watershed Water Balance Study: Potential ET

GEOG415 Mid-term Exam 110 minute February 27, 2003

Two requirements for evaporation from natural surfaces. The atmospheric boundary layer. Vertical structure of the ABL. Bloc 1. Hydrologie quantitative

Lecture 10. Surface Energy Balance (Garratt )

A GROUND-BASED PROCEDURE FOR ESTIMATING LATENT HEAT ENERGY FLUXES 1 Eric Harmsen 2, Richard Díaz 3 and Javier Chaparro 3

Surface Energy Budget

Chapter 4 Water Vapor

Eric. W. Harmsen Agricultural and Biosystems Engineering Department, University of Puerto Rico Mayaguez Campus

The role of soil moisture in influencing climate and terrestrial ecosystem processes

Approaches in modelling tritium uptake by crops

THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS

The Two Source Energy Balance model using satellite, airborne and proximal remote sensing

Validation of MODIS Data for Localized Spatio- Temporal Evapotranspiration Mapping

12 SWAT USER S MANUAL, VERSION 98.1

Land-surface atmosphere interaction


Disturbed micrometeorological flows example local advection

Name the surface winds that blow between 0 and 30. GEO 101, February 25, 2014 Monsoon Global circulation aloft El Niño Atmospheric water

Greenhouse Steady State Energy Balance Model

1. Water Vapor in Air

Evapotranspiration. Rabi H. Mohtar ABE 325

Løsningsforslag: oppgavesett kap. 9 (2 av 3) GEF2200

Atmospheric Mercury Deposition Modeling

Snow Melt with the Land Climate Boundary Condition

Boundary layer equilibrium [2005] over tropical oceans

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4

Evaporation and Evapotranspiration

Improvement of vegetation parameters for the estimation of evapotranspiration in the Midwest United States

A methodology for estimation of surface evapotranspiration

Atm S 547 Boundary Layer Meteorology

Remote sensing estimates of actual evapotranspiration in an irrigation district

Data Analysis and Modeling with Stable Isotope Ratios. Chun-Ta Lai San Diego State University June 2008

Land Surface Processes and Their Impact in Weather Forecasting

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA

Supplement of Upside-down fluxes Down Under: CO 2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest

METRIC tm. Mapping Evapotranspiration at high Resolution with Internalized Calibration. Shifa Dinesh

EFFECTIVE PARAMETERS OF SURFACE ENERGY BALANCE IN HETEROGENEOUS LANDSCAPE. (Received in final form 18 April, 1994)

1., annual precipitation is greater than annual evapotranspiration. a. On the ocean *b. On the continents

The Ocean-Atmosphere System II: Oceanic Heat Budget

Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range

Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach

Simulating Carbon and Water Balances in the Southern Boreal Forest. Omer Yetemen, Alan Barr, Andrew Ireson, Andy Black, Joe Melton

5. General Circulation Models

Assimilation of ASCAT soil wetness

Near Real-time Evapotranspiration Estimation Using Remote Sensing Data

ONE OF THE MOST WIDELY USED APPROACHES to modeling

1. Water in Soils: Infiltration and Redistribution

APPROACHES FOR AGGREGATING HETEROGENEOUS SURFACE PARAMETERS AND FLUXES FOR MESOSCALE AND CLIMATE MODELS

Craig-Gordon Evaporation and the Isotopic Composition of Leaf Water

Soil moisture retrieval with remote sensing images for debris flow forecast in humid regions

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

The Role of the Land Surface in Fog Modelling Simulations with COSMO-FOG

Stomatal conductance has a strong dependence upon humidity deficits

Understanding the Daily Cycle of Evapotranspiration: A Method to Quantify the Influence of Forcings and Feedbacks

WUFI Workshop at NTNU /SINTEF Fundamentals

A SENSITIVITY STUDY OF A COUPLED SOIL-VEGETATION BOUNDARY-LAYER SCHEME FOR USE IN ATMOSPHERIC MODELING

Effects of Ozone-CO 2 -Induced Vegetation Changes on Boundary-Layer Meteorology and Air Pollution

EVAPOTRANSPIRATION INTO THE BOUNDARY LAYER OF THE ATMOSPHERE

Eric. W. Harmsen 1, John Mecikalski 2, Vanessa Acaron 3 and Jayson Maldonado 3

Coupling between CO 2, water vapor, temperature and radon and their fluxes in an idealized equilibrium boundary layer over land.

Climate Roles of Land Surface

Fluxes: measurements and modeling. Flux

Zachary Holden - US Forest Service Region 1, Missoula MT Alan Swanson University of Montana Dept. of Geography David Affleck University of Montana

Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture

Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS

Stable Water Isotopes in the Atmosphere

APPL ICATION OF SOME ACTUAL EVAPOTRANSPIRATION MODELS IN SIMULATION OF SOIL MOISTURE

EUMETSAT LSA-SAF EVAPOTRANSPIRATION PRODUCTS STATUS AND PERSPECTIVES

2. Modeling of shrinkage during first drying period

Global Warming degrees over the last 50 years (e.g., IPCC)

Thuy Nguyen Uni Bonn 1

Joint International Surface Working Group and Satellite Applications Facility on Land Surface Analysis Workshop, IPMA, Lisboa, June 2018

Chapter 7. Water and Atmospheric Moisture. Water on Earth Unique Properties of Water Humidity Atmospheric Stability Clouds and Fog

Controls on Evaporation in a Boreal Spruce Forest

A multi-layer plant canopy model for CLM

Snow II: Snowmelt and energy balance

ET Theory 101. USCID Workshop. CUP, SIMETAW (DWR link)

The concept of canopy resistance: historical survey and comparison of different approaches

Transcription:

Contents 1 Evaporation 1 1a Evaporation from Wet Surfaces................... 1 1b Evaporation from Wet Surfaces in the absence of Advection... 4 1c Bowen Ratio Method........................ 4 1d Potential evaporation (E p )..................... 5 1e Operational methods for landsurfaces............... 5 1f Evaporation from Dry Vegetation.................. 6 1. Evaporation Evaporation is the phenomenon by which a substance is converted from the liquid state into apour. Evaporation requries energy to supply the latent heat of vaporization. From the perspective of the atmospheric scientist, much of the problem relates to determining the surface humidity (air s humidity at the humidity roughness height z q. For a wet surface q 0 is the saturated value q 0. 1a. Evaporation from Wet Surfaces Evaporation from a saturated surface where q 0 = q (T 0 ) is closely related to the concept of potential evaporation (E p ) which is the maximum possible evaporation from a given surface. Using the above equation for humidity measured at two different levels, we can define the latent heat flux of evaporation as: L v R = QE = ρl v(q 2 q 1 ) r av (1) we can express this equation in terms of vapor pressure since q 0.622e/p where γ = cpp 0.622L v E = ρl v0.622(e 2 e 1 ) (2) p r av = ρc p(e 2 e 1 ) γ r av (3) 1

If your surface is saturated, we can take measurements at only one height because the vapor pressure at the surface is the saturation vapor pressure. E = ρc p(e (T 0 ) e(t )) (4) γ r av Remember that we have also defined the sensible heat flux as: H = ρc p(θ 0 θ) (5) And since the total radiation is: R N G 0 = H 0 + λe 0 : E = (R N G 0 ) ρc p(θ 0 θ) (6) We will now express this relationship in terms of absolute temperature, by assuming that the correction is negligible, that is: T (p/p r ) R d/c p T 0 where z is the elevation above the reference level, then: We define: E = (R N G 0 ) ρc p(t 0 T ) (7) Then, = e (T 0 ) e (T ) T 0 T E = (R N G 0 ) ρc p(e (T 0 ) e (T )) (9) Now, let s manipulate this equation: (8) E = (R N G 0 ) ρc p[(e (T 0 ) e(t )) + (e(t ) e (T ))] (10) Q E + ρc p(e (T 0 ) e(t )) = (R N G 0 ) + ρc p(e (T ) e(t ) (11) we can express the second term on the left hand side as a function of QE : 2

Q E + Q E γr av = (R N0 G 0 ) + ρc p(e (T ) e(t ) (12) we finally obtain the expression for latent heat of vaporization: E = (R N G 0 ) + ρc p (e (T ) e(t )) + γr (13) av This equation has a two-term structure suggesting that the evaporation from a saturated surface has both energy and aerodynamic contributions. This equation has proven successful at modeling evaporation when applied to water surfaces, saturated soil and vegetation with wet foliage. It can be applied at hourly and longer-term. Many times, this equation, called the Penman Equation is presented as: where Q E = L v R = + γ (R N G 0 ) + γ + γ E a (14) E a = 0.622λρ P (e (T ) e(t )) = ρ (q (T ) q(t )) (15) In this way the two-term structure is clearly evident. In the original formulation of Penman (1948) he proposed an empirical equation for E a, however, we can express E a using similarity theory and the expression for. Solving this equation also requires an Iterative method. We follow almost exactly the same procedure as before (first assume neutral conditions), calculate the latent heat flux using the Penman equation, the sensible heat can be calculated directly from the net radiation as Q H = R N G 0 Q E. Then, as before, we calculate the Monin- Obukhov and begin iterations. 3

1b. Evaporation from Wet Surfaces in the absence of Advection If the air above a surface is completely saturated, the second term in the Penman equation drops. And the evaporation can be expressed as: Q E = + γ (R N G 0 ) (16) Investigations have shown, however, that these conditions are rarely encountered, if ever. However, based on this idea Priestly and Taylor (1972) used this relationship to find an empirical relation for evaporation over wet surfaces in conditions of minimal advection. Q E = α e + γ (R N G 0 ) (17) Where α e is a constant that ranges from about 1.2-1.3 over advection-free water surfaces and moist land surfaces with short vegetation. This relationship has been found to work remarkably well, and furthermore has been modified to include different vegetation stresses to use with remote sensing (Fisher et al. 2008) 1c. Bowen Ratio Method Bowen Ratio is the ratio between sensible heat and latent heat. B 0 = Q H Q E = ρc p(w θ ) s ρl v (w q ) s (18) We can express these in terms of the bulk transfer coefficients: B 0 = c pc H U(θ 0 θ) L v C E U(q 0 q) = c p(θ 0 θ) L v (q 0 q) (19) If we know the sensible heat flux, it is quite easy then to determine the latent heat flux. As an aside, if we know the flux of any other scalar (like CO2) which has a similar transfer coefficient we can also use it in the expression. We can also use the energy equation in combination with the Bowen Ratio to solve for latent heat if we know the net radiation: 4

Q E = R N G 0 1 + B 0 (20) So if we know the mean potential temperature and humidity at a certain height and at the surface, and we know the net radiation, we can solve for the latent (and sensible heat). This method has the advantage that we don t need similarity functions for the atmospheric turbulence and the formulation is independent of atmospheric stability. 1d. Potential evaporation (E p ) Generally, calculations of evaporation from wet surfaces are taken to be measures of potential evapotranspiration. We need to clarify some concepts. Potential evapotranspiration is the maximal rate of evaporation from a large area covered completely and uniformly by an actively growing vegetation with adequate moisture at all times.it is important to note, however, that that: Transpiration, even at the potential rate, involves stomatal impedance to the diffusion of water vapor so it is better to use the term potential evaporation. Wet or moist surface is not the same as one that has an adequate moisture supply for the roots of an actively growing vegetation. PET is often measured by meteorological data observed under nonpotential conditions, which would not be the same as air under potential conditions. So sometimes we call this the apparent E p or E pa. NOTE: over short non-wet vegetation with adequate moisture, the evapotranspiration is often similar to the evaporation from open water under the same conditions, this is likely due to the fact that stomatal impedance is compensated by the larger roughness values resulting in larger transfer coefficients. 1e. Operational methods for landsurfaces To predict evaporation operationally, generally we use the potential evaporation in conjunction with a procedure to derive the actual evaporation from it. Probably the oldest method is the bucket method. E = β e E p (21) 5

where E p is the potential evaporation rate and β e is a reduction factor reflecting the moisture availability. In practice we use E p a. The reduction factor is a function of soil water content. A common assumption is: β e = 1 for w > w 0 β e = (w w c )/(w 0 w c ) for w w 0 where w 0 is a critical soil water content above which E = E p and w c is a lower cut-off value below which E = 0. One difficulty in applying this formulation is that as the surface dries out β e approaches zero while E p = E pa tends to become large so they move in the opposite direction and may lead to an unstable product of a large and a small quantity. 1f. Evaporation from Dry Vegetation Evaporation is reduced below the potential rate when the surface humidity is less than the saturation value. In the leaf surface, there exists a surface resistance to water vapor transfer through foliage stomata whether the vegetation is under negligible or sever water stress. We need to introduce a surface resistance denoted by r s that applies to unsaturated surfaces and most usually to vegetation (when q 0 < q (T 0 ) ). In the case of vegetation this represents an effective stomatal resistance to the transfer of water vapor from the internal water sites in the plant to the leaf exterior. Despite the fact that this is a gross simplification, it does provide the best available simple description of the surface control on transpiration. Because evaporation also takes place from the soil suface, the basic idea is usually extended to include this transport as well. The pores are providing a resistance to the diffusion of water vapor. In this case, the latent heat flux is now a function of both the stomatal plus a boundary layer resistance: Q E = ρc p(e (T 0 ) e(t )) γ r av + r s (22) And the equation for the evapotranspiration becomes: Q E = (R N G 0 ) + ρcp (e (T 0 ) e(t )) + γ(r av +r s) (23) 6

We can assume that r av = = r a, we finally obtain the expression for latent heat of vaporization called the Penman- Monteith Equation: Q E = (R N G 0 ) + ρcp r a (e (T 0 ) e(t )) ( ) (24) + γ 1 + rs r a r s stomatal resistance of the individual leaf r a boundary layer resistance R N G 0 flux of net radiation into leaf Q E flux of latent heat from leaf ρ density of air c p specific heat or air The importance of this equation is that it gives evaporation in terms of measureable meteorological variables (R N, T, D) and known resistances. Although these resistances are really difficult to estimate in reality. While the physical nature of r a is well understood based on turbulence theory, the conceptual significance of the resistance concept remains problematic. Equations for whole-canopy exchanges are identical to single leaf, except that the energy balance is for the canopy as a whole. Single layer canopy models are usually used in numerical atmospheric models where we are interested in scales that are larger than the canopy scale. Multilayer models are appropriate when resolving details within the canopy, so for forest stands. We will deal with single layer models. The Penman-Monteith Equation for whole canopy is: Q E = (R N G 0 ) + ρcp ( ) (25) + γ 1 + r st r a r a D Where r st is the bulk stomatal resistance of the whole canopy. If r si is the resistance for a single leaf, then r st is the parallel sum of these leaf stomatal resistances with: 7

1 r st = 1 A LA,i r s i (26) where L A,i is the area of the i th leaf, A is the ground area LAI the leaf area index is LAI = L A,i /A, and the approximation generally used is: r st r si /LAI (27) The values for several canopy types is listed in Garrat Table 5.1. While this equation works with a dense canopy, for an open canopy where LAI < 1, the underlying single source assumption (only transpiration) doesn t work. Total evapotranspiration becomes a combination of transpiration from different plant types and evaporation from open areas. The equation must be applied separately to vegetated and bare areas. 8