ENGI 1313 Mechanics I

Similar documents
ENGI 1313 Mechanics I

ENGI 1313 Mechanics I

Physics Tutorial V1 2D Vectors

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

ENGI 1313 Mechanics I

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

ENGI 1313 Mechanics I

Introduction and Vectors

Continuous Charge Distributions: Electric Field and Electric Flux

FREE Download Study Package from website: &

Vectors Serway and Jewett Chapter 3

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Cartesian Coordinate System and Vectors

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

ENGI 1313 Mechanics I

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

BASIC ALGEBRA OF VECTORS

VECTOR MECHANICS FOR ENGINEERS: STATICS

Lecture 1a: Satellite Orbits

Introduction: Vectors and Integrals

Vector d is a linear vector function of vector d when the following relationships hold:

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

DonnishJournals

Section 8.2 Polar Coordinates

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

Practice Problems Test 3

7.2. Coulomb s Law. The Electric Force

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM (page 126, 12 th edition)

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

Stress, Cauchy s equation and the Navier-Stokes equations

. Using our polar coordinate conversions, we could write a

PHYS Summer Professor Caillault Homework Solutions. Chapter 9

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Physics 107 TUTORIAL ASSIGNMENT #8

Double-angle & power-reduction identities. Elementary Functions. Double-angle & power-reduction identities. Double-angle & power-reduction identities

3D-Central Force Problems I

Rotational Motion: Statics and Dynamics

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

KEPLER S LAWS OF PLANETARY MOTION

ENGI 1313 Mechanics I

B. Spherical Wave Propagation

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31,

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

Chapter 5 Force and Motion

Chapter 5 Force and Motion

Physics 235 Chapter 5. Chapter 5 Gravitation

Δt The textbook chooses to say that the average velocity is

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

Moment. F r F r d. Magnitude of moment depends on magnitude of F and the length d

Physics for Scientists and Engineers

Numerical Integration

Chapter 2: Basic Physics and Math Supplements

To Feel a Force Chapter 7 Static equilibrium - torque and friction

MAC Module 12 Eigenvalues and Eigenvectors

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy

Phys 201A. Homework 5 Solutions

Sides and Angles of Right Triangles 6. Find the indicated side length in each triangle. Round your answers to one decimal place.

Chapter 1. Introduction

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate.

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

PHYS 1114, Lecture 21, March 6 Contents:

Chapter 3: Theory of Modular Arithmetic 38

INTRODUCTION. 2. Vectors in Physics 1

PHYS Summer Professor Caillault Homework Solutions

2 Governing Equations

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving

Physics 121: Electricity & Magnetism Lecture 1

Quantum theory of angular momentum

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

P-2: The screw eye is subjected to two forces, ԦF 1 and ԦF 2. Determine the magnitude and direction of the resultant force.

In statistical computations it is desirable to have a simplified system of notation to avoid complicated formulas describing mathematical operations.

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving

ENGR 1990 Engineering Mathematics Application of Trigonometric Functions in Mechanical Engineering: Part II

Chapter 2: Introduction to Implicit Equations

University Physics (PHY 2326)

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

COLLAPSING WALLS THEOREM

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Chapter 6 Differential Analysis of Fluid Flow

On the Quasi-inverse of a Non-square Matrix: An Infinite Solution

Lecture 8 - Gauss s Law

Chapter 4: The laws of motion. Newton s first law

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Part V: Closed-form solutions to Loop Closure Equations

Chapter 1: Mathematical Concepts and Vectors

Handout: IS/LM Model

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

Magnetic Fields Due to Currents

Motions and Coordinates

Transcription:

ENGI 1313 Mechanics I Lectue 04: oce Vectos and System of Coplana oces Shawn Kenny, Ph.D., P.Eng. Assistant Pofesso aculty of Engineeing and Applied Science Memoial Univesity of Newfoundland spkenny@eng.mun.ca

Tutoial Questions SI Units and Use Section 1.4 Page 9 Use a single pefix Magnitude between 0.1 and 1000 Pa N m MPa 3 ( + 3 ( 10 N 10 N 6 5( 10 m 100 kn 10 5 mm 3 m 5 10 mm mm + 3 ( 6 N 11 N GN 10 0. 10 0 0 5m m m 6 6 6 ( 6 MN ( 10 N ( 10 N ( 10 N 6 m ( 10 mm mm 3 mm 10 m ( ( GPa 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04 N mm

Tutoial Questions SI Units and Use Section 1.4 Page 9 Use a single pefix Magnitude between 0.1 and 1000 3 9 ( 50 kn( 60nm [ 50( 10 N] [ 60( 10 m] 3+ ( 9 ( 50 60 10 3 10 ( 3 6 ( N m 3( 10 ( 10 N m 3 ( N m 3 mn m 3 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Tutoial Questions SI Units and Use Section 1.4 Page 9 Do not use compound pefixes μkg 6 3 6+ 3 3 ( 10 ( 10 g ( 10 g ( 10 g mg 4 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Chapte Objectives to eview concepts fom linea algeba to sum foces, detemine foce esultants and esolve foce components fo D vectos using Paallelogam Law to expess foce and position in Catesian vecto fom to intoduce the concept of dot poduct 5 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Lectue 04 Objectives to sum foce vectos, detemine foce esultants, and esolve foce components fo D vectos using Scala o Catesian Vecto Notation to demonstate by example 6 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Why an Altenate Appoach? Application of Paallelogam Law Cumbesome with a lage numbe of coplana foces due to successive application Recall Lectue 0 (Slide 13 7 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Paallelogam Law (Lectue 0 Multiple oce Vectos + 1 1 R + 1 + + 3 ( 1 + + 3 1 3 8 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

What is the Altenate Appoach? Resolve oce Components Algebaic Summation Rx Ry Rx x Ry y oce Vectos Component Vectos Recall Lectue 0 (Slide 9 9 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

What is the Altenate Appoach? Resolve oce Components Algebaic Summation om Resultant oce oce Vectos Component Vectos Resultant oce Vecto 10 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Coplana oce Vecto Summation How to esolve a system of foces into ectangula components and detemine the esultant foce? Two Notations Used (1 Scala Notation Moe familia appoach ( Catesian Vecto Notation Useful in applications of linea algeba Advantageous ove scala notation fo 3D 11 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Catesian Coodinate System Chaacteistics Rectangula coodinate system Unique spatial position Vecto algeba Analytical geomety Odinate Abscissa 1 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Rectangula oce Components Axes Must be Othogonal Axes Oientation Does not Matte x + y x + y 13 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Resolve oce Components Known: oce Vecto and Oientation Angle θ x y x + y x y cosθ sinθ 14 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

15 ENGI 1313 Statics I Lectue 04 007 S. Kenny, Ph.D., P.Eng. Resolve oce Components Known: oce Vecto and Slope x y + h x x x L L h y y y L L L x L y L h

Detemine Resultant oce Known: oce Components Resultant oce Magnitude Pythagoean theoem x + Resultant oce Diection y y Tigonomety 1 y θ tan x y θ x x 16 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Notation Summation Coplana oces Scala Notation R X + Y Catesian Vecto Notation ^ ^ X i + Y j Common 3. Diection: Othogonal X & Y axes 3. Diection: Unit vectos Unit Vecto; ^ i X Unit Vecto; ^ j Y 1. Magnitude: X & Y. Sense: + & - -X -i R X +Y +j Y +X +i X Y -Y -j 17 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Unit Vecto Lectue 3 Scala Magnitude and sense (+,- Vecto Magnitude, sense (+,- and diection Unit Vecto Vecto Magnitude 4 units Sense Positive Diection X-axis û A A 4 units A A A + x 18 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Coplana oce Vecto Summation Step 1: Define System of oces Rectangula coodinate system oce vectos 1, and 3 oce Vectos 19 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Coplana oce Vecto Summation Step : Resolve Component oces n nx + cosθ ny nx nx n sinθ ny ny n oce Vectos Component Vectos 0 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Coplana oce Vecto Summation Step 3: Sum System oce Components Obtain esultant foce vecto components Rx Rx N n 1 x Ry Ry N n 1 y oce Vectos Component Vectos Resultant oce Vecto 1 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Coplana oce Vecto Summation Step 3: Sum System oce Components Scala notation + + N n 1 + x y Rx Ry 1x 1y + x y 3 x 3 y oce Vectos Component Vectos Resultant oce Vecto 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Coplana oce Vecto Summation Step 4: Detemine Resultant oce Vecto Magnitude, sense and diection + x y θ tan 1 y x oce Vectos Component Vectos Resultant oce Vecto 3 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Coplana oce Vecto Summation Step 3: Sum System oce Components Catesian vecto notation R R R j + 1 3 x i + j ( i + j + ( i + ( 1x 1y ( + i + ( + j 1x x 3 x x 1y y Unit Vecto; ^ i X y 3 y 3 y 3 oce Vectos Component Vectos Resultant oce Vecto X 4 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Compehension Quiz 4-01 Resolve along x and y axes in Catesian vecto notation. { } N A 80 cos 30 i - 80 sin 30 j B 80 sin 30 i + 80 cos 30 j C 80 sin 30 i - 80 cos 30 j D 80 cos 30 i + 80 sin 30 j C y ĵ -80 cos 30 y 30 { o o 80 sin30 i 80 cos 30 j }N 80 N x 80 sin30 x 5 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Compehension Quiz 4-0 Detemine the magnitude of the esultant foce when 1 { 10 î + 0 ĵ } N { 0 î + 0 ĵ } N j R 1 1 i A 30 N B 40 N C 50 N D 60 N E 70 N {( 10 + 0 i + ( 0 + 0 j } N { 30 i + 40 j }N ( 30 N + ( 40 N 50 N C 50 N 6 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Example Poblem 4-01 ind the magnitude and angle of the esultant foce acting on the backet. Solution Plan Step 1: Define system of foces Step : Resolve component foces Step 3: Sum system foce components Step 4: Detemine esultant foce vecto, magnitude and diection 7 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Example Poblem 4-01 (cont. Step : Resolve Components Catesian vecto fom, 1 1 {( 15 sin 40 i + ( 15 cos 40 j }kn 1x 15kN sin 40 1y 15kN cos 40 1x 1y 8 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Example Poblem 4-01 (cont. Step : Resolve Components Catesian vecto fom, x -6kN (1/13 1 6 13 i + 6 5 13 j kn y 6kN (5/13 y x 9 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Example Poblem 4-01 (cont. Step : Resolve Components Catesian vecto fom, 3 3x 36kN cos 30 3 {( 36 cos 30 i ( 36 sin 30 j }kn 3y 36kN sin 30 3x 3y 30 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Example Poblem 4-01 (cont. Step : Resolve Components Catesian vecto fom 1 3 + 1 6 i + 13 {( 15 sin 40 i ( 15 cos 40 j } 5 6 13 kn j kn {( 36 cos 30 i ( 36 sin 30 j }kn 1x Theefoe 1 3 { 9.64 i + 11.491 j } { 4 i + 10 j } kn { 31.18 i 18 j }kn kn y x 1y 3x 3y 31 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Example Poblem 4-01 (cont. Step 3: Sum Collinea oces Collinea Catesian vecto fom 1 3 R { 9.64 i + 11.491 j } { 4 i + 10 j } kn { 31.18 i 18 j }kn kn {( 9.64 4 + 31.18 i + ( 11.49 + 10 18 j }kn x 1y y 3y 1x 3x 3 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Example Poblem 4-01 (cont. Step 3: Sum Collinea oces Resultant components Catesian vecto fom 1 3 { 9.64 i + 11.491 j } { 4 i + 10 j } kn { 31.18 i 18 j }kn R { R 16.8 i + 3.49 j }kn kn Ry {( 9.64 4 + 31.18 i + ( 11.49 + 10 18 j }kn Rx 33 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Example Poblem 4-01 (cont. Step 4: Detemine Resultant oce Vecto ( 16.8 kn + ( 3.49 N 17. kn θ tan 1 3.49 kn 16.8 kn 11.7 o ( ccw x axis R θ 11.7 Ry Rx 34 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Goup Poblem 4-01 ind the magnitude and angle of the esultant foce acting on the backet. Solution Plan Step 1: Define system of foces Step : Resolve component foces Step 3: Sum system foce components Step 4: Detemine esultant foce vecto, magnitude and diection 35 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Goup Poblem 4-01 (cont. Step : Resolve oce Components 1x v 4 3 1 850 i 850 j 5 5 { 680 i 510 j }N N 1y 36 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Goup Poblem 4-01 (cont. Step : Resolve oce Components v 4 3 1 850 i 850 j N 5 5 { 680 i 510 j }N v { 31.5 i 541.3 j }N o o { ( 65 sin 30 i ( 65 cos 30 j } N x y 37 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Goup Poblem 4-01 (cont. Step : Resolve oce Components 3x 3y v 4 3 1 850 i 850 j N 5 5 { 680 i 510 j }N v o o ( 65 sin 30 i ( 65 cos 30 j { 31.5 i 541.3 j }N v 3 { 530.3 i + 530.3 j }N { } o o { ( 750 cos 45 i + ( 750 sin 45 j } N N 38 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Goup Poblem 4-01 (cont. Step 3: Sum Collinea oces v 4 3 1 850 i 850 j N 5 5 { 680 i 510 j }N v o o ( 65 sin 30 i ( 65 cos 30 j { 31.5 i 541.3 j }N { } o o { ( 750 cos 45 i + ( 750 sin 45 j } v 3 { 530.3 i + 530.3 j }N v R v { R 16.8 i 51 j }N N N {( 680 31.5 530.3 i + ( 510 541.3 + 530.3 j }N Ri Rj R 39 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Goup Poblem 4-01 (cont. Step 4: Detemine Resultant oce Vecto v { R 16.8 i 51 j }N ( 16.8 N + ( 51N 546 N R θ tan 1 51N 16.8 N 7.6 o (local 53 o (ccw x axis 40 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Classification of Textbook Poblems Hibbele (007 Poblem Set Concept Degee of Difficulty Estimated Time -31 to -3 Vecto Addition Paallelogam Law Medium 10-15min -33 to -38 Vecto Addition Paallelogam Law Easy 5-10min -39 to -41 Resultant oce Easy 5-10min -4 to -55 Resultant & Components Medium 10-15min -56 Resultant & Components Had 0min 41 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04

Refeences Hibbele (007 http://wps.penhall.com/esm_hibbele_eng mech_1 en.wikipedia.og 4 007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I Lectue 04