ENGI 1313 Mechanics I

Similar documents
ENGI 1313 Mechanics I

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

ENGI 1313 Mechanics I

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

Vectors Serway and Jewett Chapter 3

Physics Tutorial V1 2D Vectors

Vectors and 2D Motion. Vectors and Scalars

. Using our polar coordinate conversions, we could write a

Introduction and Vectors

Sides and Angles of Right Triangles 6. Find the indicated side length in each triangle. Round your answers to one decimal place.

ENGI 1313 Mechanics I

Practice Problems Test 3

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

DonnishJournals

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

VECTOR MECHANICS FOR ENGINEERS: STATICS

PHYS Summer Professor Caillault Homework Solutions

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Cartesian Coordinate System and Vectors

Lecture 1a: Satellite Orbits

BASIC ALGEBRA OF VECTORS

ENGI 1313 Mechanics I

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

Phys 201A. Homework 5 Solutions

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force

ENGI 1313 Mechanics I

Chapter 1. Introduction

Δt The textbook chooses to say that the average velocity is

INTRODUCTION. 2. Vectors in Physics 1

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j.

ENGR 1990 Engineering Mathematics Application of Trigonometric Functions in Mechanical Engineering: Part II

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

Physics 121: Electricity & Magnetism Lecture 1

Physics 11 Chapter 20: Electric Fields and Forces

Double-angle & power-reduction identities. Elementary Functions. Double-angle & power-reduction identities. Double-angle & power-reduction identities

PROBLEM (page 126, 12 th edition)

PHYS 1114, Lecture 21, March 6 Contents:

Describing Circular motion

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Chapter 5 Force and Motion

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

Chapter 5 Force and Motion

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics for Scientists and Engineers

Physics 107 TUTORIAL ASSIGNMENT #8

To Feel a Force Chapter 7 Static equilibrium - torque and friction

Chapter 4. Newton s Laws of Motion

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate.

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

KEPLER S LAWS OF PLANETARY MOTION

CALCULUS II Vectors. Paul Dawkins

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

Continuous Charge Distributions: Electric Field and Electric Flux

3D-Central Force Problems I

PHYSICS 272H Electric & Magnetic Interactions

7.2. Coulomb s Law. The Electric Force

PHYS Summer Professor Caillault Homework Solutions. Chapter 9

PHYSICS 151 Notes for Online Lecture #20

Chapter 5 Page 5.1 CHAPTER 5. r Force times distance has units of energy. Therefore, fxr=u, or f / is dimensionless.

Part V: Closed-form solutions to Loop Closure Equations

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving.

ENGI 5708 Design of Civil Engineering Systems

Section 8.2 Polar Coordinates

Fri Angular Momentum Quiz 10 RE 11.a; HW10: 13*, 21, 30, 39 Mon , (.12) Rotational + Translational RE 11.b Tues.

Rotational Motion: Statics and Dynamics

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

PHYS Summer Professor Caillault Homework Solutions

Mark Scheme 4727 June 2006

B. Spherical Wave Propagation

Green s Identities and Green s Functions

Chapter 1: Mathematical Concepts and Vectors

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy

PHYS 2135 Exam I February 13, 2018

Easy. r p 2 f : r p 2i. r p 1i. r p 1 f. m blood g kg. P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic energy is

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

Chapter 12. Kinetics of Particles: Newton s Second Law

Preamble: Mind your language

Electromagnetism Physics 15b

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

COLLAPSING WALLS THEOREM

Lecture 1a: Satellite Orbits

ω = θ θ o = θ θ = s r v = rω

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx

Vector d is a linear vector function of vector d when the following relationships hold:

Chapter 3: Theory of Modular Arithmetic 38

No. 39. R.E. Woodrow. This issue we give another example of a team competition with the problems

P-2: The screw eye is subjected to two forces, ԦF 1 and ԦF 2. Determine the magnitude and direction of the resultant force.

Theme Music: MGMT Electric Feel* Cartoon: Bob Thaves Frank & Ernest

PS113 Chapter 5 Dynamics of Uniform Circular Motion

2 Governing Equations

constant t [rad.s -1 ] v / r r [m.s -2 ] (direction: towards centre of circle / perpendicular to circle)

B da = 0. Q E da = ε. E da = E dv

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

Transcription:

ENGI 1313 Mechanics I Lectue 03: Foce Vectos and Paallelogam Law Shawn Kenny, Ph.D., P.Eng. Assistant Pofesso Faculty of Engineeing and Applied Science Memoial Univesity of Newfoundland spkenny@eng.mun.ca

Revised Couse Method of Evaluation 6 Tutoial Quizzes 15% Duing week 38, 39, 40, 43, 44, & 45 Best 5 out of 6 towad final Mid-Tem Exam 30% Oct. 18 Final Exam 55% Dec. 6 2 2007 S. Kenny, Ph.D., P.Eng.

Tutoial Sessions Teaching Assistants Kenton Pike (kenton@eng.mun.ca) Nasse Daiyan (daiyann@eng.mun.ca) YanZhen Ou (yanzhen@eng.mun.ca) Section 1 2 3 4 5 6 Day Mon Thu Thu Thu Fi Fi Time 3 3:50 2 2:50 4 4:50 10 10:50 3 3:50 4 4:50 Room EN1040 EN1040 EN1040 EN2007 EN1040 EN1040 3 2007 S. Kenny, Ph.D., P.Eng.

Chapte 2 Objectives to eview concepts fom linea algeba to sum foces, detemine foce esultants and esolve foce components fo 2D vectos using Paallelogam Law to expess foce and position in Catesian vecto fom to intoduce the concept of dot poduct 4 2007 S. Kenny, Ph.D., P.Eng.

Lectue 03 Objectives to eview concepts fom linea algeba to sum foce vectos, detemine foce esultants, and esolve foce components fo 2D vectos using Paallelogam Law 5 2007 S. Kenny, Ph.D., P.Eng.

Intoductoy Concepts Scala Magnitude (value) and sense (positive, negative) No diection Examples Mass Volume Length Tempeatue Speed C = A + B C = 10 kg + 12 kg = 22 kg 6 2007 S. Kenny, Ph.D., P.Eng.

Intoductoy Concepts Vecto Magnitude Sense (+, -) Diection o oientation Magnitude Convention Textbook is boldface, A PowePoint notation typically A Examples Foce Velocity Diection Sense 7 2007 S. Kenny, Ph.D., P.Eng.

Scala Multiplication and Division Change in Magnitude Change in Sense F = m a 8 2007 S. Kenny, Ph.D., P.Eng.

Vecto Opeations Engineeing Need Detemine esultant foce due to applied foces Resolve foce into components Method Paallelogam law F = F Tiangle constuction R 1 2 3 4 + F + F + F 9 2007 S. Kenny, Ph.D., P.Eng.

Vecto Addition Paallelogam Law Resultant Vecto (F R ) Gaphical constuction F = F + F R 1 2 Component Vectos (F 1, F 2 ) Vecto Tip F1 F R Resultant Vecto foms the Paallelogam Diagonal Vecto Tail F 2 Vecto Tip 10 2007 S. Kenny, Ph.D., P.Eng.

Vecto Addition Paallelogam Law Special case Collinea vectos Algebaic addition 11 2007 S. Kenny, Ph.D., P.Eng.

Vecto Addition Paallelogam Paallelogam Law Tip-to-Tail technique F = F + F R 1 2 Tiangle constuction F2 F1 F R 12 2007 S. Kenny, Ph.D., P.Eng.

Vecto Addition Paallelogam Paallelogam Law Tip-to-Tail technique F = F + F R 2 1 Tiangle constuction F R F 1 F 2 13 2007 S. Kenny, Ph.D., P.Eng.

Vecto Subtaction Paallelogam Law Tiangle Constuction Tip-to-Tail technique F 2 F = ( ) F F = F + F 1 2 1 2 F R F 1 14 2007 S. Kenny, Ph.D., P.Eng.

Paallelogam Law Multiple Foce Vectos F + F 1 F2 2 F = = F 1 F R F + F 1 2 + F 2 + F3 ( F ) 1 + F2 + F3 F 1 F 2 F 3 15 2007 S. Kenny, Ph.D., P.Eng.

Vecto Summation Resultant Foce Magnitude Cosine law 16 2007 S. Kenny, Ph.D., P.Eng.

Vecto Summation Resultant Foce Diection o Magnitude of Component Foces Sine law a + b + c = 180 o 17 2007 S. Kenny, Ph.D., P.Eng.

Applications Lifting Devices 18 2007 S. Kenny, Ph.D., P.Eng.

Applications Guyed Towes 19 2007 S. Kenny, Ph.D., P.Eng.

Applications Cable Stayed Bidge 20 2007 S. Kenny, Ph.D., P.Eng.

Applications Offshoe Platfom Foundation Connections 21 2007 S. Kenny, Ph.D., P.Eng.

Applications Towing 22 2007 S. Kenny, Ph.D., P.Eng.

Compehension Quiz 2-01 Scala o Vecto? Foce Vecto Time Scala Mass Scala Position Vecto 23 2007 S. Kenny, Ph.D., P.Eng.

Compehension Quiz 2-02 Q: Is this the coect application of the paallelogam law to detemine the esultant foce vecto (F R )? F 1 = 4 kn X F R sin ( 180 90 30) sin 30 30 F R = 4 kn 90 F 2 = 10 kn F R = 6.93 kn Y 4 kn 24 2007 S. Kenny, Ph.D., P.Eng.

Compehension Quiz 2-02 (cont.) A: No Tip-to-Tail tiangle constuction technique F 1 = 4 kn X 30 θ 1 θ R = 180 (180 30 90 ) = 120 F 2 = 10 kn θ R θ 2 F R Y F 1 = 4 kn 25 2007 S. Kenny, Ph.D., P.Eng.

Compehension Quiz 2-02 (cont.) Detemine Resultant Foce Magnitude Cosine Law 2 2 FR FR = F + F 2 F1 F2 cosθ 1 2 R = 30 F 1 = 4 kn θ 1 F 2 = 10 kn F R θ R θ 2 Y F 1 = 4 kn θ R = 120 X F 2 2 ( 4 kn) + ( 10 kn) 2 ( 4 kn)( 10 kn) cos120 12.49 kn R = = Theefoe F R = 12.5 kn 26 2007 S. Kenny, Ph.D., P.Eng.

Compehension Quiz 2-02 (cont.) Detemine Resultant Foce Diection Sine Law F1 sinθ = θ 1 F R sinθ R 4 kn sin120 12.49 kn 1 o 1 = sin = 16. 09 Theefoe 43.9 fom hoizontal (clockwise) 30 F 1 = 4 kn 43.9 θ 1 F 2 = 10 kn F R θ R θ 2 Y F 1 = 4 kn θ R = 120 X 27 2007 S. Kenny, Ph.D., P.Eng.

Example Poblem 3-01 Detemine the component magnitudes (F X and F Y ) of the 700-lb foce esultant (F R ) F R = 700 lb Y F Y θ X F R = 700 lb Y 60 30 Vecto Tiangle θ R F x 60 θ Y 30 X X 28 2007 S. Kenny, Ph.D., P.Eng.

Example Poblem 3-01 (cont.) Detemine Inteio Angles of Vecto Tiangle θ Y = 60-30 = 30 α = 90-30 = 60 θ X Y θ X = α = 60 θ R 30 60 θ Y α 30 θ R = 180-60 - 30 = 90 X 29 2007 S. Kenny, Ph.D., P.Eng.

Example Poblem 3-01 (cont.) Detemine the component magnitudes (F x and F y ) of the esultant 700-lb foce F Y F 60 R = 700 lb 90 F x Y 30 60 30 F X = sinθ X FR sinθ R = 700 lb sin60 sin90 = 606 lb FR 700 lb FY = sinθy = sin30 = 350 lb sinθ sin90 R X 30 2007 S. Kenny, Ph.D., P.Eng.

Example Poblem 3-02 Poblem 2-12 fom Hibbele (2007) The component of foce F acting along line aa is equied to be 30 lb. Detemine the magnitude of F and its component along line bb. Given: 31 2007 S. Kenny, Ph.D., P.Eng.

Example Poblem 3-02 (cont.) Poblem 2-12 fom Hibbele (2007) Daw foce vectos F a = 30lb θ F b F θ b 60 80 F b a F a = 30lb a b θ 2 = θ b = 60 θ F = 180 - θ 1 - θ b = 180-80 -60 = 40 32 2007 S. Kenny, Ph.D., P.Eng.

Example Poblem 3-02 (cont.) Poblem 2-12 fom Hibbele (2007) Magnitude of F & F b fom sine law F a = 30lb 40 60 80 F θ 1 = θ a = 80 F b F = sinθ Fa sinθ 30 lb sin40 sin80 F = = a 19.6 lb θ 2 = θ b = 60 θ F = 40 F Fa = sinθb sinθ a 30 lb = sin60 sin80 b = 26.4 lb 33 2007 S. Kenny, Ph.D., P.Eng.

Vecto Summation Methods Studied Paallelogam Law Vecto tiangle constuction Sine law Cosine law Limitations Resultant of multiple vectos detemined though successive summation of two vectos Cumbesome fo lage systems 34 2007 S. Kenny, Ph.D., P.Eng.

Repesentative Poblems Hibbele (2007) Textbook Poblem Set Concept Degee of Difficulty Estimated Time 2-1 to 2-10 Vecto Addition Paallelogam Law Easy 5-10min 2-11 to 2-19 Vecto Addition Paallelogam Law Medium 10-15min 2-20 to 2-24 Vecto Addition Paallelogam Law Easy 5-10min 2-25 to 2-30 Vecto Addition Paallelogam Law Medium 10-15min 35 2007 S. Kenny, Ph.D., P.Eng.

Refeences Hibbele (2007) http://wps.penhall.com/esm_hibbele_engmech_1 www.hanessupply.com www.sabecom.com en.wikipedia.og www.caldwellinc.com www.atlantia.com www.c-coe.ca www.staylight.ca/geglocke/hibenia.htm www.hibenia.ca 36 2007 S. Kenny, Ph.D., P.Eng.