Tips and Tricks of Faster LC Analysis Without Capital Investment It may be easier than you think!

Similar documents
Tips and Tricks of HPLC System Troubleshooting

Advanced Topic: Tips and Tricks of HPLC Separations and Troubleshooting. Rita Steed LC Advanced Topics Seminar Series August 25, 2010.

Barry E. Boyes, Ph.D. Consumables and Accessories Business Unit May 10, 2000

HPLC Column Troubleshooting: Is It Really The Column? LC Columns and Consumables. Robyn C. Woolley Online Application Engineer July 24, 2007.

HPLC Column Troubleshooting

The Secrets of Rapid HPLC Method Development. Choosing Columns for Rapid Method Development and Short Analysis Times

Choosing Columns and Conditions for the Best Peak Shape

William E. Barber, Ph.D. Applications Chemist October

Welcome to our E-Seminar: Choosing HPLC Columns for Faster Analysis Smaller and Faster

High Performance Liquid Chromatography

High Performance Liquid Chromatography

LC and LC/MS Column Selection Flow Chart

penta-hilic UHPLC COLUMNS

LC Column Troubleshooting. Do you have an equivalent column for my LC column?

High Resolution Fast LC

Basic principles of HPLC

Eliminating Unwanted Variability in LC Methods: More Uptime, More Sample Throughput

HPLC Method Development with Eclipse Plus: Standard Practices and New Columns. Agilent Technologies

Reversed Phase Solvents

penta-hilic UHPLC COLUMNS

[ CARE AND USE MANUAL ]

New To HPLC Avoiding Beginner Pitfalls. Rita Steed LC Columns Application Engineer April 24, 2013

C18 Column. Care & Use Sheet

HPLC Method Development: Standard Practices and New Columns

Validated HPLC Methods

for Acclaim Mixed-Mode HILIC-1 Column

HPLC Separation Robustness and Ruggedness Assessing the Effects of Experimental Variables During Method Development

State-of-the-art C18 HPLC Columns

InertSustainSwift C8

Solid Phase Extraction Method Development Tips and Tricks

HPLC Separation Fundamentals. Ed Kim Application Engineer Agilent Technologies, Inc January 14, 2009

Improve Peak Shape and Productivity in HPLC Analysis of Pharmaceutical Compounds with Eclipse Plus C8 Columns Application

Product Bulletin. ACE LC/MS and Rapid Analysis HPLC Columns. HPLC Columns

Shodex TM ODP2 HP series columns

Fast Separation of Vastly Different Compounds by Isocratic HPLC

Acclaim Mixed-Mode WCX-1

ACQUITY UPLC HSS Columns

Too Polar for Reversed Phase What Do You Do?

Chemistry Instrumental Analysis Lecture 31. Chem 4631

[ Care and Use Manual ]

Practical Applications of Method Translation Using the Agilent Method Translation Tool Rita Steed Inside Application Engineer Agilent Technologies

Reversed Phase Chromatography: Mobile phase Considerations

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

LC Technical Information

ProPac WCX-10 Columns

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents

P R O D U C T B U L L E T I N. Fused-Core particle technology for hyper-fast and super-rugged HPLC columns

High Performance Liquid Chromatography

Rapid Screening and Analysis of Components in Nonalcoholic Drinks Application

FAQ's. 1 - Which column would be the most appropriate for my application?

HPLC Method Development: Standard Practices and New Columns. Agilent Technologies February 2007

A C18 Silica Column With Exceptional Temperature and ph Stability

COMPARISON GUIDE. to C18 Reversed Phase HPLC Columns. Comparison Data on 60 Commonly Used C18 Phases. Stationary Phase Specifications

[ Care and Use Manual ]

Value of Eclipse Plus C18 and ph Selectivity to Analyze Amine-Containing Drugs

HPLC analysis of VFAs, Furfural and HMF

Tips and tricks to increase HPLC column lifetime. Dr. Frank Michel

High Pressure/Performance Liquid Chromatography (HPLC)

Agilent 1290 Infinity Quaternary LC Stepwise Transfer to Methods with MS-Compatible Mobile Phases

Thermo Scientific Accucore XL HPLC Columns. Technical Manual

Agilent s New Weak Anion Exchange (WAX) Solid Phase Extraction Cartridges: SampliQ WAX

Comparison of different aqueous mobile phase HPLC techniques

XSEL EC T C HA RGED SU RFAC E HYBRID (C SH) COLUMNS

Hypersil BDS Columns TG 01-05

ProntoSIL C18-EPS Reversed-Phase HPLC Columns

1.7 m Fortis UHPLC Columns

Packings for HPLC. Packings for HPLC

Performance characteristics of the Agilent 1290 Infinity Quaternary Pump

High Performance Liquid Chromatography

(HILIC) Bill Champion Agilent Technologies, Inc opt 3/opt3/opt 2 HILIC - Agilent Restricted

Method Development in Solid Phase Extraction using Non-Polar ISOLUTE SPE Columns for the Extraction of Aqueous Samples

Zirconia: the Ideal Substrate for Ion-Exchange LC and LC-MS

Unexpected Peaks in Chromatograms - Are They Related Compounds, System Peaks or Contaminations? From the Diary of an HPLC Detective

[ CARE AND USE MANUAL ]

Dilution(*) Chromatography

GPC/SEC Practical Tips and Tricks. Thomas Dent Applications Scientist Agilent Technologies. October, 2011 Gulf Coast Conference


New Product Update. HPLC Columns

How proteins separate on reverse-phase HPLC

Does one-size-fit-all?

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography

for Acclaim Mixed-Mode WCX-1

LC III: HPLC. Originally referred to as High-Pressure Liquid Chromatography. Now more commonly called High Performance Liquid Chromatography

Advantages of polymerbased. an alternative for ODS

Alltech Alltima HP Introduction

"Theory and Practice of High Speed Chromatography for Bioanalysis" Stuart Coleman March 20, 2007

for Acclaim Trinity TM P1

InertSustainSwift C8

Comparison Guide to C18 Reversed Phase HPLC Columns

[ CARE AND USE MANUAL ] XSELECT HSS XP 2.5 µm COLUMNS I. INTRODUCTION CONTENTS I. INTRODUCTION II. GETTING STARTED III. COLUMN USE

Phenyl-Hexyl. UHPLC Columns. Alternate, complementary selectivity to C18 and C8 bonded phases

Ensure reproducible Polymeric SPE workflow for high-throughput bioanalysis applications

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS

Kromasil. for your analytical HPLC. Kromasil. The way to peak performance in liquid chromatography

HPLC COLUMNS WILEY-VCH. Theory, Technology, and Practice. Uwe D. Neue with a contribution from M. Zoubair El Fallah

Figure 1. Structures for Vitamin B2 and Vitamin B1.

COSMOSIL Applications

The Low-Temperature Evaporative Light-Scattering Detector (LT-ELSD)

Acclaim Mixed-Mode WAX-1 Columns

Potential sources of contamination on Mass Spectrometers and suggested cleaning procedures

Transcription:

Tips and Tricks of Faster LC Analysis Without Capital Investment It may be easier than you think! Agilent Technologies Page Tips and Tricks of HPLC System Troubleshooting Agilent Technologies Page

Trouble Shooting Steps You Have Recognized There is a Problem! How Do You Fix It? st Did System Suitability or Calibration Sample Fail? Make Blank Runs nd Review Method for Compliance Is The Procedure Being Followed Properly? Are Instrument Settings Correct? rd Ask More Questions! When Did the System Last Function Properly? Has Anything Been Changed? th Review ALL parameters! The Obvious Is Not Always the Cause Was There More Than One Change? Page HPLC System Components Pump Injector/Autosampler Column Detector Data System/Integrator Problems Can Be Related to All Components in the System Page

Column Problems From LC GC User Survey Column Problem Percentage of Respondents Back Pressure, Plugged Frits % Poor Reproducibility 6% Sample Recovery % Loss of Resolution % Instability % Voids 8.% Leaks, Fittings.8% ph Range.0% Low Plate Count.0% Column Overload.0% Cost.7% Miscellaneous 5% Page 5 Categories of Column and System Problems A. Pressure B. Peak shape C. Retention Page 6

Pressure Issues Column Observations High pressure Potential Problems - Plugged frit - Column contamination - Plugged packing Low Pressure - Leak - Flow Incorrect Page 7 Determining the Cause and Correcting High Back Pressure Check pressure with/without column - many pressure problems are due to blockages in the system or guard col. Remove Column - Pressure Still High? Remove Guard Pressure Still High? If Column pressure is high: Back flush column Clear dirty frit surface Wash column Eliminate column contamination and plugged packing high molecular weight/adsorbed compounds precipitate from sample or buffer Change frit Clear plugged frit PREVENT THIS! Page 8

Correcting Overpressure Determining the Cause and Correcting High Back Pressure Many pressure problems relate to blockages in the system. Check system pressure with / without column If column pressure is high: Back flush column (care regarding future performance) Clear blocked frit (reverse flush with strong solvent) Wash column Eliminate column contamination and clear blocked packing Remove high M w / adsorbed compounds Clear precipitate introduced from the sample or buffer Page 9 Plugged Packing Particle Size Area (um ) Diameter (um) Frit Porosity (um) 5.0.7 0.9.0.5. 0.6.0.0.0 0.6 0.5.5 0.7 0.5.8 0. 0. 0.5.7 0. 0. Beware of buffered mobile phases Buffers usually contain insoluble material filter Buffer solubility decreases with increasing % organic* - avoid 00%B with buffer salts *Schellinger,A.P. and Carr,P.W., LC-GC North America,, 6, 5-58 (00) Page 0 5

Buffer solubility Table I presents an estimate of the soluble concentration of the least soluble buffer (potassium phosphate at ph 7.0) in three organic cosolvents Page Solubility of five buffers in mixtures with (a) methanol, (b) acetonitrile, and (c) tetrahydrofuran methanol acetonitrile THF Solubility of five buffers in mixtures with (a) methanol, (b) acetonitrile, and (c) tetrahydrofuran, where represents ammonium acetate at ph 5.0, represents ammonium phosphate at ph.0, --- represents potassium phosphate at ph.0, represents ammonium phosphate at ph 7.0, and represents potassium phosphate at ph 7.0. The 95% confidence level intervals are. mm. Page 6

Changing a Frit May Not Be a Good Idea May not be possible with new generation columns May damage high performance columns Column Inlet Frit Column Body Compression Ferrule Wear gloves Do not allow bed to dry Do not touch the column - body heat will extrude packing Do not overtighten Female End Fitting Male End Fitting Tip: Prevention is a Much Better Idea! Page The Trick: Prevention Techniques - A Better Choice! Use column protection - In-line filters - Guard columns Filter samples Filter buffered mobile phases Easy Sample clean-up (i.e. SPE) Appropriate column flushing Not As Easy Page 7

Inexpensive Filters Prevent Column Frit Plugging Regenerated Cellulose (RC) Recommended Universal hydrophilic membrane, compatible with most solvents - aqueous and organic High purity, extremely low extractables High recovery More Uniform Surface Different than Other Cellulose Filters!! In-line Filters Easy to Use and replace Frits Available in 0.,0.5 and.0µ Porosity Much Less expensive than a Column Easier and Faster to Replace than a Column Frit Mini-UniPrep Vials UniPrep vials contain an integral filter (PTFE, PP, RC or Nylon - 0. or 0.5µm porosity) Page 5 Column Cleaning Flush with stronger solvents than your mobile phase. Reversed-Phase Solvent Choices in Order of Increasing Strength This Is Time Consuming Often Performed Offline Use at least 5 ml of each solvent for analytical columns Mobile phase without buffer salts 00% Methanol 00% Acetonitrile 75% Acetonitrile:5% Isopropanol 00% Isopropanol 00% Methylene Chloride* 00% Hexane* Must Reverse to Re-Equilibrate *Tip: When using either Hexane or Methylene Chloride the column must be flushed with Isopropanol before returning to your reversed-phase mobile phase. Page 6 8

Column Cleaning Normal Phase Use at least 50mL or 0 0 column volume changes for analytical columns Typical normal phase solvent choices in order of increasing strength: Solvent Composition Methanol:Chloroform 50:50% Ethyl Acetate 00% Page 7 What Are Common Peak Shape Issues?. Split peaks. Peak tailing. Broad peaks Many peak shape issues are also combinations - i.e. broad and tailing or tailing with increased retention Symptoms do not necessarily affect all peaks in the chromatogram Each of these problems can have multiple causes Page 8 9

Peak Splitting Caused By Disrupted Sample Path Flow Path Disrupted by Void Sample Allowed to Follow Different Paths Through Column Poorly Packed Bed Settles in Use High ph Dissolves Silica Normal Split or Double Peaks Double Peaks Tip: Similar Effect Can be Caused by Partially Plugged Frit Page 9 Split Peaks from Column Contamination Column: StableBond SB-C8,.6 x 50 mm, 5 µm Mobile Phase: 60% 5 mm Na HPO, ph.0 : 0% MeOH Flow Rate:.0 ml/min Temperature: 5 C Detection: UV 5 nm Sample: Filtered OTC Cold Medication:. Pseudoephedrine. APAP. Unknown. Chlorpheniramine Injection Injection 0 Injection After Column Wash with 00% ACN 0 5 0 5 0 5 0 5 0 5 0 5 Tip: Column washing eliminates the peak splitting, which resulted from a contaminant on the column How could this be prevented? (Guard Column, SPE clean up of samples, Periodic column wash) Page 0 0

Split Peaks from Injection Solvent Effects Column: StableBond SB-C8,.6 x 50 mm, 5 µm Mobile Phase: 8% H O : 8% ACN Injection Volume: 0 µl Sample:. Caffeine. Salicylamide A. Injection Solvent 00% Acetonitrile B. Injection Solvent Mobile Phase 0 0 0 0 Tip: Injecting in a solvent stronger than the mobile phase can cause peak shape problems such as peak splitting or broadening Trick: Keep Organic Concentration in Sample Solvent < Mobile Phase Page Peak Tailing, Broadening and Loss of Efficiency May be caused by: Column secondary interactions Column contamination Column aging Column loading Extra-column effects Page

Peak Shape: Tailing Peaks Symmetry >. Causes Some Peaks Tail: Secondary - Retention Effects. Residual Silanol Interactions. Small Peak Eluting on Tail of Larger Peak. Normal Normal Tailing Tailing All Peaks Tail: Extra-Column Effects. Build up of Contamination on Column Inlet. Heavy Metals. Bad Column. Page Peak Tailing Identifying Column Secondary Interactions Column: Alkyl-C8,.6 x 50 mm, 5µm Mobile Phase: 85% 5 mm Na HPO ph 7.0 : 5% ACN Flow Rate:.0 ml/min Temperature: 5 C Sample:. Phenylpropa nolamine. Ephedrine. Amphetamine. Methamphetamine 5. Phenteramine No TEA USP TF (5%)..9..9..6..5 5..57 5 5 0 mm TEA USP TF (5%)..9..8..0..6 5.. 0.0.5 5.0 TIme (min) 0.0.5 5.0 Tip: Mobile phase modifier (TEA) competes with Sample for surface ion exchange sites at mid-range ph values Page

Peak Tailing Low ph Minimizes Secondary Interactions for Amines Column: Alkyl-C8,.6 x 50 mm, 5µm Mobile Phase: 85% 5 mm Na HPO : 5% ACN Flow Rate:.0 ml/min Temperature: 5 C Sample:. Phenylpropa nolamine. Ephedrine. Amphetamine. Methamphetamine 5. Phenteramine ph.0 USP TF (5%).. 5 5 ph 7.0 USP TF (5%)..5 0.0.5 5.0 0.0.5 5.0 Tip: Reducing mobile phase ph reduces interactions with silanols and peak tailing. Page 5 Peak Tailing High ph Eliminates Secondary Interactions for Amines Column: ZORBAX Extend-C8,.6 x 50 mm, 5 m m Mobile Phase: See Below Flow Rate:.0 ml/min Temperature: RT Detection: UV 5 nm Sample:. Maleate. Scopolamine. Pseudoephedrine. Doxylamine 5. Chlorpheniramine 6. Triprolidine 7. Diphenhydramine ph 7 0% 0 mm Na HPO 70% MeOH ph 0% 0 mm TEA 70% MeOH, 7 7 t 5 R = 8.5 t R =. 5 6 6 0 5 0 5 0 Peak Shape and Retention of this sample of basic compounds improves at high ph where column has high IEX activity. Why? Page 6

Peak Tailing - Column Contamination Tip: Quick Test to Determine if Column is Dirty or Damaged Trick: Reverse Column and Run Sample If Improved, Possible Cleaning Will Help -No improvement-column Damaged and Needs to be Replaced QC test forward direction Plates TF. 769.08. 0.6. 77.69 55. QC test reverse direction Plates TF. 7906.... 7999.9 7098.5 QC test after cleaning 00% IPA, 5 C Plates TF. 78.06. 7.. 566. 9067.7 0.0.5 5.0 0.0.5 5.0 0.0.5 5.0 Column: StableBond SB-C8,.6 x 50 mm, 5µm Mobile Phase: 0% H O : 80% MeOH Flow Rate:.0 ml/min Temperature: R.T. Detection: UV 5 nm Sample:. Uracil. Phenol. -Chloronitrobenzene. Toluene Page 7 Peak Shape: Fronting Peaks 000 mau 500 000 500 0 0 5 0 5 0 5 Normal Symmetry < 0.9 Fronting Causes: Column Overload Page 8

Peak Tailing/Broadening Sample Load Effects Columns:.6 x 50 mm, 5µm Mobile Phase: 0% 5 mm Na HPO ph 7.0 : 60% ACN Flow Rate:.5 ml/min Temperature: 0 C Sample:. Desipramine. Nortriptyline. Doxepin. Imipramine 5. Amitriptyline 6. Trimipramine Tailing Eclpse XDB-C8 USP TF (5%) i A. High Load x0 C. Broadening Competitive C8 Plates A B..60.70..00.90..56.56...70 5..5.86 6..5.5 0 5 0 B. Low Load D. 0 5 0 C D. 850 59. 85 78. 776 6. 59 859 5. 75 00 6. 589 075 0 5 0 5 Tip: Evaluate Both Volume and Mass Loading Page 9 Peak Shape: Broad Peaks All Peaks Broadened: Loss of Column Efficiency. Column Void. Large Injection Volume. Some Peaks Broadened: Late Elution from Previous Sample (Ghost Peak). High Molecular Weight. Sample - Protein or Polymer. Page 0 5

Unknown Phantom Peaks Column: Extend-C8,.6 x 50 mm, 5 µm Mobile Phase: 0% 0 mm TEA, ph : 60% MeOH Flow Rate:.0 ml/min Temperature: R.T. Detection: UV 5 Sample:. Maleate. Pseudoephedrine. Chlorpheniramine Sample : Chlorpheniramine maleate Peak : maleate Sample : Chlorpheniramine maleate and Pseudoephedrine Peak : maleate Peak : pseudoephedrine Peak : chlorpheniramine (from st injection) Plates. 59. 9879. 779 Phantom peak from first injection 0 5 0 0 5 0 5 Tip: The extremely low plates for moderately retained peaks are an indication of a very late eluting peak from a preceding run. Page Extra-Column Dispersion Increasing Extra-Column Volume Use short, small internal diameter tubing between the injector and the column and between the column and the detector. Make certain all tubing connections are made with matched fittings. Use a low-volume detector cell. Inject small sample volumes. Page 6

Peak Broadening Extra-Column Volume Column: StableBond SB-C8,.6 x 0 mm,.5 µm Mobile Phase: 85% HO with 0.% TFA : 5% ACN Flow Rate:.0 ml/min Temperature: 5 C Sample:. Phenylalan ine. 5-benzyl-,6-dioxo--piperazine acetic acid. Asp-phe. Aspartame 0 ml extra-column volume 50 ml extra-column volume (tubing) 0.0 0.5.0.5.0 0.0 0.5.0.5.0 Page Tip: Poorly Made HPLC System Connections Can Cause Peak Broadening The System Has Been Optimized and : All Tubing Lengths Are Minimum Smallest Diameter Tubing Used Proper Flow Cell Volume Symptom Still Seems to Have Too Much Extra-Column Volume What Is Wrong? Have You Made the Connections Properly? Page 7

Column Connectors Used in HPLC Troubleshooting LC Fittings, Part II. J. W. Dolan and P. Upchurch. LC/GC Magazine 6:788 (988) Swagelok 0.090 in. Waters 0.0 in. Parker 0.090 in. Rheodyne 0.70 in. Valco 0.080 in. Uptight 0.090 in. Page 5 What Happens If the Connections Poorly Made? Wrong too long Ferrule cannot seat properly Wrong too short If Dimension X is too long, leaks will occur X Mixing Chamber X If Dimension X is too short, a dead-volume, or mixing chamber, will occur Page 6 8

Stainless Steel and Polymer Fittings Which type is used and when? Stainless Steel (SS) fittings are the best choice for reliable high pressure sealing Agilent uses Swagelok type fittings with front and back ferrules which give best sealing performance throughout all our LC systems PEEK (<00b bar System Pressure) fittings are ideal where: Connections are changed frequently, i.e. connecting columns Pressure is less critical PolyKetone Easy, hand tighten column connection 600 bar Pressure Rating PN: 50-8957 (0/pk) Fits to SS Tubing Page 7 Changes in Retention Can Be Chemical or Physical May be caused by: Column aging Column contamination Insufficient equilibration Poor column/mobile phase combination Change in mobile phase Change in flow rate Different Gradient Delay Volumes Page 8 9

: : : : : : : : : Column Aging/Equilibration Causes Retention/Selectivity Changes Column - Initial Column - Next Day Column - After Cleaning with % H PO /Equilibration 0 5 9 5 0 5 9 5 The primary analyte was sensitive to mobile phase aging/ conditioning of the column The peak shape was a secondary issue (metal chelating compound) resolved by de-activating the active metal contamination Page 9 Metal Sensitive Compounds Can Chelate Hint: Look for Lone Pair of Electrons on :O: or N Which Can Form 5 or 6 Membered Ring with Metal : H C O OH + M + H C O O H M + Salicylaldehyde 6-membered ring complex N: M + OH C C O N M + OH 8-hydroxyquinoline 5-membered ring complex a-benzoinoxomine 5-membered ring complex Page 0 0

Acid Wash Can Improve Peak Shape Before Acid Wash After Acid Wash 50 00 mls % H PO HO OH OH HO OH.... OH OH OH Columns: ZORBAX SB-Phenyl.6 x 50 mm Mobile Phase: 75% 5 mm ammonium phosphate buffer 5% ACN Flow Rate:.0 ml/min. Temperature: RT Sample Size: 5 ml Tf:.7 Tf:. A % H PO solution is used on SB columns, 0.5 % can be used on endcapped columns. Page Example: Change in Retention/Selectivity Unintended Mobile Phase Variation Tip: The Source of the Problem is Often Not the Obvious Change Column Column Column - Fresh mobile phase 0 6 0 5 6 7 0 6 I have experimented with our mobile phase, opening new bottles of all mobile phase components. When I use all fresh ingredients, the problem ceases to exist, and I have narrowed the problem to either a bad bottle of TEA or phosphoric acid. Our problem has been solved. Page

Maintain Resolution for Low Volume Peaks by Minimizing Extra-Column Volume ECV = sample volume + connecting tube volume + fitting volume + detector cell volume Page Tip: Dwell Volume Differences Between Instruments Can Cause Changes in Retention and Resolution V D = 0. ml Column: ZORBAX Rapid Resolution Eclipse XDB-C8.6 x 75 mm,.5 µm 0 0 0 0 0 V D =.0 ml 0 0 0 0 0 Mobile Phase: Gradient, 0-00 %B in 5.5 min. Flow Rate: Temperature:5 C Injection: 5 µl Detection: Sample: A: 5/95 methanol/ 5 mm phosphate ph.50 B: 80/0 methanol/5 mm phosphate ph.50 0.5 ml/min 50 nm Mixture of antibiotics and antidepressants Upper trace simulates actual run data entered into DryLab.0 software Lower trace is simulated chromatogram for larger V D Page

Trick: Measure and Correct for Dwell Volume (V D ) If V D > V D Compensate for longer V D by adding an isocratic hold to V D, such that Hold + V D = V D If V D < V D Delay injection, such that V D - delay = V D Page 5 Mobile Phase ph and ph Buffers Why Are These So Important in HPLC? ph Effects Ionization Silica Surface of Column Sample Components of Interest Buffers Resist Changes in ph and Maintain Retention Improve Peak Shape for Ionizable Compounds Effects Column Life Low ph strips Bonded Phase High ph Dissolves Silica Page 6

Minimize Change in Retention/Selectivity Lot-to-Lot Evaluate: All causes of column-to-column change* Method ruggedness (buffers/ionic strength) ph sensitivity (sample/column interactions) *All causes of column-to-column change should be considered first, especially when only one column from a lot has been tested. Page 7 Lot-to-Lot Selectivity Change Related to ph Choice ph.5 - Lot ph.0 - Lot -Base -Base 0 6 8 0 6 8 0 6 8 0 6 8 ph.5 - Lot ph.0 - Lot -Base -Base 0 6 8 0 6 8 0 6 8 0 6 8 ph.5 shows selectivity change from lot-to-lot for basic compounds ph.0 shows no selectivity change from lot-to-lot Indication of poorly controlled ionization Page 8

Why Worry About ph? ph, pka and Weak Acids RCOOH RCOO - + H + COOH COO _ + H + Ka = [RCOO- ][H + ] [RCOOH] Ka = 6. x 0-5 pka =. At ph. the sample exists as benzoic acid and the benzoate ion in a ratio of :. Peak shape can be poor At ph 5. 9% of the sample exists as the benzoate ion. RP retention decreases. At ph. 9% of the sample exists as benzoic acid. RP retention increases. Page 9 Effect of ph on Peak Shape at or Near the Sample pka Column: ZORBAX SB-C8.6 x 50 mm, 5 mm Flow Rate:.0 ml/min. Mobile Phase: 0% 5 mm KH PO : 60% ACN Temperature: RT CH CHCOOH ph. ph.0 CH CH(CH ) Ibuprofen pk a =. 0 5 6 7 8 9 0 0 5 6 7 8 9 0 Inconsistent and tailing peaks may occur when operating close to an analyte pka and should be avoided. Page 50 5

Why Worry About ph? ph, pka and Weak Bases RNH + RN + H + Ka = [RN][H+ ] [RNH + ] CHOCH CH N + H CH CH CHOCH CH N + CH CH H + Ka = x 0-9 pka = 9 At ph 9 the sample exists as protonated and unprotonated diphenhydramine in a ratio of :. Peak shape can be poor. At ph 0 9% of the sample exists as unprotonated diphenhydramine. At ph 8 9% of the sample exists as protonated diphenhydramine. Page 5 ph vs. Selectivity for Acids and Bases.5 6 Column: Nucleosil-C8 Mobile Phase: 5% ACN/55% phosphate buffer Sample: Bile Acids SCD 0 Column: mbondapak-c8 Mobile Phase: 60% 5 mm phosphate buffer 0% Methanol. Salicylic acid 5. Phenobarbital. Phenacetin. Nicotine 5. Methamphetamine log k«.0 0.5 UDC 5 SOC C -OC + + 7, - OC + + Retention 0 0 J.C. (975) 9 0.0-0.5 J.C. 68(98) 5 6 7 8 ph A B C + + 0 0 5 7 9 ELUENT ph Retention and selectivity can change dramatically when ph is changed. Page 5 6

Importance of ph and Buffers A Practical Example Why the Sample Dictates Use What Happens When Buffer Used Effectively What Happens When Buffer Ignored or Used Improperly Page 5 Importance of ph and Buffers - A Practical Example Optimized Isocratic Conditions for Cardiac Drugs Column: StableBond SB-C8,.6 x 50 mm, 5 mm Mobile Phase: 5% 5 mm NaH PO, ph.0 55% MeOH Flow Rate:.0 ml/min. Temperature:5 C Detection: UV 5 nm Sample: Cardiac Drugs. Diltiazem. Dipyridamole. Nifedipine 5. Lidoflazine 5. Flunarizine 0 5 6 7 8 9 0 Page 5 7

I Don t Have Time to Make Buffers or Adjust ph Column: StableBond SB-C8.6 x 50 mm, 5 mm Mobile Phase: A: 0% H O B: 80% MeOH Flow Rate:.0 ml/min. Temperature:5 C UV Detection: 5 nm Sample: Cardiac Drugs Even at very high % MeOH Most Components Strongly Retained with Poor peak Shape Due to IEX at Surface 0 5 0 5 0 5 Buffers are critical to good retention and peak shape in many separations. Page 55 What If You Work Outside the Buffer Range? Columns: StableBond SB-C8.6 x 50 mm, 5 mm Mobile Phase: A: 0% 5 mm NaH PO, ph.8 unbuffered B: 70% MeOH Flow Rate:.0 ml/min. Temperature:5 C UV Detection: 5 nm Sample: Cardiac Drugs. Diltiazem Unsuitable Peak Shape. Dipyridamole. Nifedipine. Lidoflazine 5. Flunarizine 5 0 5 0 5 0 5 Page 56 8

Commonly Used Buffers for Reversed Phase HPLC Buffer pka Buffer Range UV Cutoff (nm) Phosphate..-. 00 7. 6.-8...-. Formic acid*.8.8-.8 0 Acetic acid*.8.8-5.8 0 Citrate..-. 0.7.7-5.7 5..-6. Tris 8. 7.-9. 05 Triethylamine*.0 0.0-.0 00 Pyrrolidine. 0.-. 00 * Volatile buffers for LC/MS applications Optimum buffering capacity occurs at a ph equal to the pka of the buffer. Most buffers provide adequate buffering capacity for controlling mobile phase ph only within ± unit of their pka Page 57 Don t Forget - Match Column to ph of Mobile Phase for Maximum Column Lifetime low ph and high temperature (ph 0.8, 90 C) Purge Solvent: 50% methanol/water with.0% TFA Solute: Toluene Kirkland, J.J. and J.W. Henderson, Journal of Chromatographic Science, (99) 7-80. Page 58 9

Don t Forget - Match Column to ph of Mobile Phase for Maximum Column Lifetime High ph and Room Temperature (ph RT) Mobile Phase: 50%ACN: 50% Water : 0.% TEA (~ ph ) Initial After 0 injections Tip: Use Columns Designed for chosen ph Page 59 Detection Issues Recognize Where the Problem Originates Is it a consequence of technique? Is It expected due to use of certain mobile phase components? Can it be corrected by adjusting detector parameters? Answers Will Help Find a Solution! Let s Explore Some Problems and Solutions Page 60 0

Peak Shape: Negative Peaks Normal Negative Causes: Absorbance of sample is less than the mobile phase. Equilibrium disturbance when sample solvent passes through the column. Normal with Refractive Index Detectors. Page 6 Ghost Peaks 60 5 Ghost Peaks - Peaks which appear even when no sample is injected. Problem - Dirty Mobile Phase 0 5 0 7 0% - 00% 5 7 MeOH Gradient No Sample Injected Page 6

Noisy Baselines Time (min.) Possible Causes: Dirty Flow Cell Detector Lamp Failing Pulses from Pump if Periodic Temperature Effects on Detector Air Bubbles passing through Detector Page 6 Drifting Baselines Gradient Elution Temperature Unstable (Refractive Index Detector) Contamination in Mobile Phase Mobile Phase Not in Equilibrium with Column Contamination Bleed in System Page 6

Chromatographic Results with Wrong Lamp at nm Wavelength OEM Lamp Lamp from Generic Source Tip: Could also be a symptom of aging lamp Page 65 Expanded View of Chromatographic Results Generic Source Lamp at nm Wavelength OEM Lamp Peak S/N = 50 Peak S/N = 00 Peak S/N = 00 Lamp from Generic Source Peak S/N = 5 Peak S/N = 50 Peak S/N = 50 Tip: Poor S/N makes it difficult to detect low level impurities Page 66

Effect of Detector Response Time The System is operating well-the settings were poorly made! Slow Data Rates Can Hinder Impurity Detection and Reduce Sensitivity Response Time 0. sec st peak =. sec At 0 pts/sec = pts/sec st peak =. sec At 5 pts/sec = 6 pts 0. sec 0.5 sec.0 sec.0 sec 0 0. 0. 0. 0. 0.5 0.6 0.7 0.8 0.9.0 Agilent 00 DAD Agilent 00 WPS with ADVR Column: Poroshell 00SB-C8. x 75 mm, 5 mm Mobile Phase: A: 95% H O, 5% ACN with 0.% TFA B: 5% H O, 5% ACN with 0.% TFA Flow Rate: ml/min Temperature:70 C Detector: Piston stroke: 0 UV 5 nm Sample:. Neurotensin. Lysozyme. RNaseA. Myoglobin Tip: Adjust the response rate of your detector for best peak detection. Page 67 Conclusions HPLC column problems are evident as High pressure (prevention better than the cure) Undesirable peak shape Changes in retention/selectivity Often these problems are not associated with the column and may be caused by instrument and chemistry issues. ph of mobile Phase Instrument Connections Detector Settings Metal Contamination Start With the Correct Questions Find the Answers The Answers will Lead to Solutions Page 68