VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS

Similar documents
EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d

ANALYSIS: THEORY AND APPLICATION FOR

A NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES

MODELLING DAMAGE AND PROGRESSIVE COLLAPSE OF FRAMES USING A GAUSSIAN SPRINGS BASED APPLIED ELEMENT METHOD

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method

University of Sheffield The development of finite elements for 3D structural analysis in fire

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Finite Element Method in Geotechnical Engineering

Entrance exam Master Course

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS

3D Finite Element analysis of stud anchors with large head and embedment depth

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS

CHAPTER 6: ULTIMATE LIMIT STATE

LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL

Dynamic analysis of a reinforced concrete shear wall with strain rate effect. Synopsis. Introduction

Abstract. 1 Introduction

[5] Stress and Strain

EQUIVALENT FRACTURE ENERGY CONCEPT FOR DYNAMIC RESPONSE ANALYSIS OF PROTOTYPE RC GIRDERS

Unit 18 Other Issues In Buckling/Structural Instability

Analysis of a portal steel frame subject to fire by use of a truss model

Mesoscopic Simulation of Failure of Mortar and Concrete by 3D RBSM

Verification Examples. FEM-Design. version

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ENG1001 Engineering Design 1

MECHANICS OF MATERIALS Sample Problem 4.2

1 Static Plastic Behaviour of Beams

Deformation analysis of timber-framed panel dome structure I: simulation of a dome model connected by elastic springs

FINITE GRID SOLUTION FOR NON-RECTANGULAR PLATES

Discrete Element Modelling of a Reinforced Concrete Structure

Comb resonator design (2)

Chapter 12. Static Equilibrium and Elasticity

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

Centrifuge Shaking Table Tests and FEM Analyses of RC Pile Foundation and Underground Structure

Finite Element Modelling with Plastic Hinges

Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS

Finite element analysis of diagonal tension failure in RC beams

NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS

CONFERINŢA INTERNAŢIONALĂ DEDUCON 70

The University of Melbourne Engineering Mechanics

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

EUROCODE EN SEISMIC DESIGN OF BRIDGES

SPREAD OF PLASTICITY ANALYSIS OF R/C BUILDINGS, SUBJECTED TO MONOTONIC SEISMIC LOADING

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Evaluation of size effect on shear strength of reinforced concrete deep beams using refined strut-and-tie model

ALGORITHM FOR NON-PROPORTIONAL LOADING IN SEQUENTIALLY LINEAR ANALYSIS

Mechanics of Irregular Honeycomb Structures

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

INTRODUCTION TO STRAIN

FIXED BEAMS IN BENDING

National Exams May 2015

Stress analysis of a stepped bar

Experimental Study and Numerical Simulation on Steel Plate Girders With Deep Section

THE BEHAVIOUR OF REINFORCED CONCRETE AS DEPICTED IN FINITE ELEMENT ANALYSIS.

A Performance Modeling Strategy based on Multifiber Beams to Estimate Crack Openings ESTIMATE in Concrete Structures CRACK

Mechanical Design in Optical Engineering. For a prismatic bar of length L in tension by axial forces P we have determined:

Mesoscopic Simulation of Failure of Mortar and Concrete by 2D RBSM

Effect of buttress on reduction of rock slope sliding along geological boundary

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Due Tuesday, September 21 st, 12:00 midnight

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

Module 5: Theories of Failure

Sensitivity and Reliability Analysis of Nonlinear Frame Structures

Mechanics of Earthquakes and Faulting

ME 2570 MECHANICS OF MATERIALS

Plastic design of continuous beams

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

Lecture 4 Honeycombs Notes, 3.054

Structural behaviour of traditional mortise-and-tenon timber joints

Comb Resonator Design (2)

MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING

Fire Analysis of Reinforced Concrete Beams with 2-D Plane Stress Concrete Model

Collapse modes of structures under strong motions of earthquake

Mechanical Properties of Materials

INFLUENCE OF LOADING RATIO ON QUANTIFIED VISIBLE DAMAGES OF R/C STRUCTURAL MEMBERS

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

5 ADVANCED FRACTURE MODELS

CHAPTER 4: BENDING OF BEAMS

3.22 Mechanical Properties of Materials Spring 2008

Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics

Strength of Materials (15CV 32)

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

A new computational method for threaded connection stiffness

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Strength of Material. Shear Strain. Dr. Attaullah Shah

Introduction to Engineering Materials ENGR2000. Dr. Coates

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

MECHANICS OF MATERIALS

Transcription:

The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS K. Worakanchana and K. Meguro Project researcher, International Center for Urban Safety Engineering, Institute of Industrial Science, the University of Tokyo, Japan Director, International Center for Urban Safety Engineering, Institute of Industrial Science, the University of Tokyo, Japan Email: kawin@iis.u-tokyo.ac.jp ABSTRACT : Voronoi Applied Element Method (VAEM) has been developed based on previous Applied Element Method (AEM). Compared to the original AEM, the advantages of VAEM are: the VAEM domain boundary can fit any type of domain easily, pre-existing joint rather than horizontal and vertical joints can be modeled, element size can be changed and displacement solution is not depended on the element size and etc. The verification of the model from elastic to non-linear range is shown in the paper. The proposed model shows good compatibility with theoretical and experimental results. KEYWORDS: Applied Element Method, Nonlinear analysis, Discrete element, Fractures, Failures. INTRODUCTION Applied Element Method (AEM) is a numerical model for simulating structural behavior from elastic range to total collapse (Meguro and Tagel-Din, 997). In AEM, a structure is modeled as an assembly of rigid elements connected together with zero-length normal and shear springs. The major advantages of AEM are simple modeling and programming and high accuracy of the results with relatively short CPU time. By using AEM, highly non-linear behavior, i.e. crack initiation, crack propagation, separation of the structural elements, rigid body motion of failed elements and totally collapse behavior of the structure can be followed with high accuracy. The model can achieve high accuracy in simulating behavior of those materials. However, due to the fact that the model contains only square shape element, there was several disadvantages. To eliminate these disadvantages, a new AEM based on Voronoi shape is proposed. y u θ x u 3 u p u 5 u 3 u u u 6 u 5 y u 6 u 4 u 4 Figure Example of a VAEM mesh x (a) Figure Two-particle assemblage and their degree of freedom (a) global coordinate (b) local coordinate (b) Each element shape is based on the Voronoi tessellation (Okabe et al., 99). To represent the physical domain with the Voronoi element, first, element nodes are given in the space within the domain. Then, all locations in the physical domain are associated with the closest member(s) of the element nodal set with respect

The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China to Euclidean distance. A region generated by a nodal point represents a Voronoi element (Figure ). Using the Voronoi Applied Element Method (VAEM), the element nodes can be placed anywhere in the physical domain with no constraint. Therefore, they can be placed to fit with any domain shape without considerably reducing the element size in the original AEM. Moreover, element sizes can be varied and concentrated in areas of interest by varying the density of element nodes. Also, the location of the element nodes can be placed to create weak zones representing pre-existing joints in any direction. In this paper, the formulation of the VAEM is introduced and verified in the elastic range and the non-linear range for reinforced concrete materials. (x c,y c ) p p t i+ t i (x c,y c ) Figure 3 Two-particle assemblage after deformed Figure 4 Normal and shear spring at element boundary. VORONOI APPLIED ELEMENT METHOD (VAEM). Element Formulation Considering a two-particle subassemblage shown in Figure, each rigid particle has two translational and a rotational degree of freedom defined at the particle centroid. Assuming small rotations, motion at any points (x,y) of a rigid body can be defined for element and as u =u c - u 3 (y-y c ) u =u c + u 3 (x-x c ) u 4 =u c4 - u 6 (y-y c ) u 5 =u c5 + u 6 (x-x c ) () where u, u and u 3 and u 4, u 5 and u 6 are translational displacements and rotation angles of elements and in the global coordinate. Subscript c specifies the value at the particle centroid. Point p on the boundary surface is separated and defined by p and p after deforming (Figure 3). The relative displacement vector of spring deformation in global coordinate at point p can be defined as δ x u4 u {δ g }= p p = = δ y u5 u () Substituting Equation () into () and rotating the displacement to the local coordinate parallel to the element surface; we can obtain the relationship between spring deformation in local coordinate and particle displacement in global coordinate is obtained: {δ l }=[R][B]{u} (3) where {δ l } T =[δ n, δ t ] in which δ n and δ t are normal and shear deformation of spring, respectively, [R]= cos α sin α is the rotational matrix, deformation-displacement relationship in global coordinates. sinα cosα

The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China [B] = 0 ( y yc ) 0 ( y y ) c 0 ( x xc ) 0 ( x x ) and {u} T = [u, u, u 3, u 4, u 5, u 6 ]. The strain energy due to c spring deformation on the boundary line S can be given as T W= { δl} [D]{ δl} ds (4) where the constitutive relationship [D]=Diag[k ni,, k si ] in which k ni and k si is stiffness of normal and shear springs number i, respectively. Applying Equation (8) into (9), we have: where [K] = W= {u}t [K]{u} (5) n ti+ T [B] [D][B] ds is the stiffness matrix due to all springs on the boundary. t i and t i+ indicate i= t i the initial and last points of the boundary portion representing the spring i (Figure 4). By applying Castigliano s theorem to Equation (5), stiffness equation can be derived as {r}= V = [K]{u} (6) u where {r} contains the generalized force components associated with each displacement vector {u}.. Equivalent continuum In this study, the relationship between discrete constants k ni and k si and the elastic properties follows the equivalent continuum method (Morikawa et.al., 985). The method employs the equivalence of strain energy between the discrete and continuum system and the advantage of close-pack circular discrete element geometry. To apply this concept to the conventional AEM, it was found that these relationships are almost the same as the original proposed one but multiply by 3. Therefore, this relationship for VAEM is defined as Plane stress: Plane strain: k k ni ni E t E t ( 3ν ) =, ksi = ( ν ) d ( ν ) d E t E t ( 4ν ) =, ksi = ( ν)( + ν) d ( ν)( + ν) d (7) (8) where E is elastic modulus, ν = Poisson s ratio, t = element thickness and d = distance between two particles. It should be noted that the Poisson s ratio is limited from - to 0.33 for plain stress and - to 0.5 for plain strain to prevent a negative value of tangential stiffness. 3. VERIFICATION FOR ELASTIC BEHAVIOR In this section, the behavior of VAEM in elastic range is verified by analyzing a cantilever beam and a circular disk. 3. Cantilever beam The cantilever beam with a cross-section of x m and 0 m span is subjected to the point load at the free end. Young s modulus is.4x0 7 kn/m and Poisson s ratio is 0. The displacement at the cantilever end obtained from VAEM and the original AEM are shown in the Table. The table shows that both square shaped and Voronoi shaped AEM results match well with the theoretical result.

The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China E =.4 x0 7, ν = 0 0 m P m m m Figure 5 Geometry of cantilever beam Table Comparison of displacement at the cantilever end of VAEM, AEM and theoretical solution Exact (PL 3 /3EI) AEM VAEM δ v (m) 9.0 9. 9. 3. Circular disk This example shows the elastic analysis of a circular domain. This type of domain requires a large number of elements in the original AEM to obtain accurate results due to its single size square-shaped element. Figure 6 shows the VAEM mesh of circular disk of 8 unit diameter subjected to two point loads from the top and bottom of the disk. In this problem, the Young s modulus used is.4x0 7. The stress distribution at the center line is compared with the theory of elasticity and good agreement is observed (Figure 7). 0-5 -4-3 - - 0 3 4 5-5000 D = 8 unit E =.4 x0 7, ν = 0 Figure 6 Circular disk with vertical applied load Vertical stress -0000-5000 -0000-5000 -30000 Distance from center Exact Vor-ver Rec Vor-hor Vor-small Vor-med Figure 7 Comparison of stress distribution at the centerline from AEM, VAEM and exact solution 4. VAEM FOR FRACTURE ANALYSIS OF CONCRETE MATERIAL The verification of VAEM for simulating plain and reinforced concrete structural behavior was conducted. The original AEM has capability of tracking the crack distribution without prior knowledge of the crack location. However, the crack distribution is limited to only the vertical and horizontal directions according to the element shape. With the VAEM, cracks have more freedom to propagate therefore the crack propagation can better follow the real crack patterns. 4. Concrete modeling In this model, the behavior of the material is initially elastic, i.e., σ=eε, where E is the apparent concrete Young s modulus. Inelastic behavior is formulated based on similar concept of stress-strain boundary introduced by Cusatis et al. (003). Elastic behavior is limited by three boundaries, which are tension-shear, compression shear and compression as shown in Figure 8. This concept is based on the normal and shear stress in the springs rather than the tensorial measure of stress therefore the criteria can be biased based on the

The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China mesh configuration. Schlangen (995) used a criteria based on stress measures computed at the nodes of a beam lattice, rather than in the beams themselves. Moreover, Meguro and Hatem (998) employed the principal stresses concept similar to the use of tensorial measure by Schlangen. However principal stresses is calculated at the springs themselves instead of element nodes. Employing the principal criteria approach is expected to reduce the mesh bias on the fracture criteria however it is not included in this study. In this model, a crack occurs if the force reaches tension-shear boundary. Cracking is represented by reducing the original to 0.0 of the initial stiffness. Then, all forces in normal and shear springs are redistributed. If the force reaches the compression shear and compression boundary, the stiffness of the spring is also assumed as 0.0 of the initial stiffness however no force is redistributed. Compression - shear boundary τ σ Compression boundary φ c Tension-shear boundary Steel spring ε, compression E o /00 ε, tension σ c σ t Figure 8 Stress-strain boundary for concrete σ Figure 9 Steel springs and their material properties 4. Reinforcement model Unlike the previous AEM, the normal and shear spring for reinforcement do not usually go along the edges of the elements. The reinforcement was modeled by adding the normal and shear springs inclined to edges as shown in Figure 9. In this study, perfectly plastic model was used in reinforcing bar to represent yielding (Figure 9). 4.3 Reinforced concrete modeling In this section, VAEM is used to simulate the reinforced concrete behavior in the monotonic static loading condition. The numerical results are compared with the experiment results in the following sections. Table Material properties of concrete and steel of beams Concrete Steel F cu (MPa) F t (MPa) pr pr Diameter (mm) Yield stress (MPa) 7.9.7 0.4% 0.8% D6 36.8 4.4 Size effect analysis A simulation of a beam from experiment by Iguro et al. (985) was carried out. The beam was not provided with shear reinforcement. The material properties for beam are shown in Table. The beam dimensions, reinforcement as well as load-deformation behavior are shown in Figures 0. An applied load is uniformly distributed by water pressure system. The main reinforcement ratio pr in the vicinity of the supporting where shear failure would occur is taken to be 0.4% and it is taken to be 0.8% in the middle of the beam.

The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China AEM VAEM Figure 0 Comparison of stress-displacement relation A mesh of,9 was used in the model. Loading is applied using load control condition. The comparison of the force-displacement relationship is shown in Figures 0. It can be seen that the force-deformation relationships obtained from VAEM are close to the experimental results and numerical results from AEM and FEM. However, VAEM exhibits lower strength compared to AEM because the diagonal crack in VAEM is represented by a shorter crack (less zigzag) which consumes less energy for generating. From Figures to 3, by comparing crack patterns from VAEM with AEM and actual damage, it was observed that the crack patterns from VAEM is closer to the actual crack patterns than from AEM. Figure Crack pattern from experiment Figure Crack patterns by VAEM

The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China Figure 3 Crack pattern by the original AEM 5. LARGE DEFORMATION ANALYSIS To simulate the structural behavior under large deformations, the geometrical change has to be considered during each step of the calculation. This requires the following additional procedures: ) Update the location of the element node according to previously calculated incremental displacement ) Calculate the geometrical residuals as {R G }={f}-{f m } (6) This is to account for the incompatibility between the external applied forces vector, {f} and internal forces, {F m } due to modification of geometry of the structure. 3) Take into account the geometrical residual in the stiffness equation which can be written as: [K]{u} = {r}+{r G } (9) The verification of this method is shown in the following paragraphs. The geometry of the beam subjected to the compressive load is shown in Figure 4. Young s modulus of the beam is equaled to 8.4x0 4 kn/m. The result obtained from the numerical model is compared with the analytical solution (Timoshenko, S.P. and Gere, J.M., 96). The numerical model predicts closely values for the theoretical buckling load and force-displacement relationship of the post buckling behavior (Figure 5). Figure 4 Beam geometry 6. CONCLUSIONS The VAEM has been developed based on the original AEM. Elastic behavior of VAEM model was verified in this paper. Compared to the original AEM, the advantages of the VAEM are: - The boundary, even very irregular one, domain is easier to fit. - Pre-existing joints or weaker and/or stronger zones in any direction can be modeled. - The model does not require numerical Poisson s ratio (however Poisson s ratio is limited from - to 0.33 in plain stress and - to 0.5 in plain strain). - Varying the element size is simply done. - Displacement solution is not depended of the element size

The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China Displacment (m) 0-0 -5-0 -5 0-00 vor-dx vor-dy -00 analytic-dx analytic-dy -300-400 Force (kn) Figure 5 Comparison of the large deformation analysis from numerical model and analytic solution (vor-dx: x-direction displacement from Voronoi mesh; vor-dy: y-direction displacement from Voronoi mesh; analytic-dx: x-direction displacement from analytic result; analytic-dy: y-direction displacement from analytic result) The VAEM was verified for predicting the behavior of plain and reinforced concrete. In all cases, the obtained crack locations agree well with the experimental results. In case of RC simulation, the diagonal crack obtained by VAEM was closer to experimental result than the original AEM because VAEM element boundary allows the crack to propagate closer to real crack. Moreover, because it consumes less energy to generate the shorter crack, VAEM result exhibits less maximum resistant compared to the AEM one. -500-600 -700-800 -900-000 REFERENCES Cusatis, G., Bazant Z. P., and Cedolin, L. (003). Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: I. Theory. J. Eng. Mech., 9:, 439-447. Iguro, M., Shioya, T., Nojiri, Y., and Akiyama, H. (985). Experimental Studies on Shear Strength of Large Reinforced Concrete Beam under Distributed Load. Concrete Library of JSCE, 5, 37-54. Meguro, K., and Tagel-Din, H. (997). Development and Application of New Model for Fracture Behavior Analysis of Structures. First US-Japan Workshop on Earthquake Engineering Frontiers in Transporation Facilities, Buffalo, New York, U.S. Morikawa, H., Sawamota Y, and Kobayashi N. (985) Local Fracture Analysis of a Reinforced Concrete Slab by Discrete Element Method. Proceeding of the st Conference on Numerical Methods and Fracture Mechanics, Swansea. Okabe, A., Boots, B., Sugihara K., and Nok Chiu, S. (99). Spatial Tesselation Concepts and Applications of Voronoi Diagrams, nd ed., John Wiley & Sons, New York, U.S. Schlangen, E. (995) Computational aspects of fracture simulations with lattice models. Fracture Mechanics of Concrete structures, Wittmann FH, Aedificatio, Freiburg, Germany, 93. Timoshenko, S.P. and Gere, J.M. (96). Theory of elastic stability, nd Ed., McGraw-Hill, New York, U.S.