CHEMICAL EQUILIBRIA: GENERAL CONCEPTS

Similar documents
Dr. Valverde s AP Chemistry Class

AP* Chapter 13. Chemical Equilibrium

January 03, Ch 13 SB equilibrium.notebook

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION

Chapter 15 Equilibrium

Chemical Equilibrium

EQUILIBRIUM CONSTANT, K eq or K. The Law of Chemical Equilibrium: (Guldberg & Waage, 1864)

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g)

15.1 The Concept of Equilibrium

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibrium

Chapter 15 Equilibrium

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g)

Chapter 15 Equilibrium

Chapter 15. Chemical Equilibrium

UNIT 11 Practice Test Page 1 of 13 Equilibrium

Chapter 15 Chemical Equilibrium

CHEMICAL EQUILIBRIUM. Chapter 15

Chapter Fifteen. Chemical Equilibrium

Le Châtelier s Principle. 19 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. Equilibrium: Le Châtelier s Principle

1.0 L container NO 2 = 0.12 mole. time

Equilibrium. Reversible Reactions. Chemical Equilibrium

Chemical Equilibrium. Chapter

C h a p t e r 13. Chemical Equilibrium

Chemical Equilibrium Practice Problems #2

Chapter 6: Chemical Equilibrium

REACTION EQUILIBRIUM

Name period AP Unit 8: equilibrium

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The. Equilibrium. Constant. Chapter 15 Chemical Equilibrium. The Concept of Equilibrium. The Concept of Equilibrium. A System at Equilibrium

CHEMICAL EQUILIBRIUM Chapter 13

Chapter 15 Chemical Equilibrium. Equilibrium

Equilibrium and Reversible Rxns. CHAPTER 14 Chemical Equilibrium. What happens? Stoichiometry

CHEMICAL EQUILIBRIA. Dynamic Equilibrium Equilibrium involves reversible reactions which do not go to completion.

1.6 Chemical equilibria and Le Chatelier s principle

Chapter 15 Equilibrium

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make?

EQUILIBRIUM GENERAL CONCEPTS

(i.e., equilibrium is established) leads to: K = k 1

1. a. The rates of the forward and reverse reactions are equal at equilibrium.

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level.

6. Which will react faster: Magnesium and 2M hydrochloric acid, or Magnesium and 0.5M hydrochloric acid?

I never let my schooling get in the way of my education.

b. There is no net change in the composition (as long as temperature is constant).

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) B) 1588 C) 397 D) 28 E) 0.

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium

QUESTIONS: Equilibria AS & AS

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y]

3 Chemical Equilibrium

Equilibrium Reversible Reactions

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

1301 Dynamic Equilibrium, Keq,

Review Unit #11. Review Unit # H 2 O (g) + CO (g) H 2(g) + CO 2(g) H>1

Chapter 15 Chemical Equilibrium

CHAPTER 7: Chemical Equilibrium

Write equilibrium law expressions from balanced chemical equations for heterogeneous and homogeneous systems. Include: mass action expression.

CHEMISTRY. Chapter 15 Chemical Equilibrium

Solubility Equilibrium, Ksp and more Name

AP Chem Chapter 12 Notes: Gaseous Equilibrium

Write a balanced reaction.. then write the equation.. then solve for something!!

Lecture Presentation. Chapter 15. Chemical Equilibrium. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

A.P. Chemistry. Unit #11. Chemical Equilibrium

Study Guide for Module 13 An Introduction to Equilibrium

AP Chapter 14: Chemical Equilibrium & Ksp

The N 2 O 4 -NO 2 Equilibrium

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 1588 B) C) 28 D) 397 E) 0.

Chapter 9. Chemical Equilibrium

Equilibrium means that the rxn rates are equal. evaporation H20(l) condensation

Equilibrium Unit. Terminology. Terminology 11/04/2018. Chemistry 30 Ms. Hayduk

EQUILIBRIA. e Q = a D B

CHEMICAL EQUILIBRIA. Section A Q1 The dissociation of dinitrogen tetraoxide into nitrogen dioxide is represented by the equation below.

Practice Test F.1 (pg 1 of 7) Unit F - General Equilibrium Kp and Kc Name Per

Chemical Equilibria. OCR Chemistry A H432

GASEOUS EQUILIBRIUM CH. 12 EQUILIBRIUM

Chapter 15. Chemical Equilibrium

Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline Chemical Equilibrium. A. Definition:

CHAPTER 13 CHEMICAL EQUILIBRIUM. Questions. The Equilibrium Constant

K P VERSUS K C PROPERTIES OF THE EQUILIBRIUM CONSTANT

Chapter 13: Chemical Equilibrium

The Extent of Chemical Reactions

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions

Chemical Kinetics and

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium

EQUILIBRIUM. Opposing reactions proceed at equal rates Concs. of reactants & products do not change over time

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g)

Chemistry 40S Chemical Equilibrium (This unit has been adapted from

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) equilibrium

CHEMICAL EQUILIBRIUM. 6.3 Le Chatelier s Principle

91166 Demonstrate understanding of chemical reactivity Collated questions on equilibria

(g) + 3 H 2. (g) 2 NH 3. 1) Only gases and dissolved species appear in an equilibrium expression. 4 NH 3. O(g) K c = (s) + 2N 2.

Gas Phase Equilibrium

Chemical reactions with large K c (also K p) effectively go 100% to products.

Write a balanced equation for the thermal decomposition of calcium nitrate. ... (2)

Chapter Outline. The Dynamics of Chemical Equilibrium

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s)

Chemical Equilibrium - Chapter 15

Ch 6 Practice Problems

Chemical Equilibrium. Chemical Equilibrium

Transcription:

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS THE NATURE OF THE EQUILIBRIUM STATE: Equilibrium is the state where the concentrations of all reactants and products remain constant with time. (in stoichiometry, we dealt with equations that went to completion; often equilibrium equations are going to fall short of this goal) Reactions are reversible. This is indicated by double arrows.! dynamic-- indicates that the reaction is proceeding in the forward and in the reverse direction and once equilibrium is established, the rate of each direction is equal. This keeps the concentration of reactants and products equal.! the nature and properties of the equilibrium state are the same, no matter what the direction of approach.! Examples: Look at the following plot of the reaction between steam and carbon monoxide in a closed vessel at a high temperature where the reaction takes place rapidly. H 2 O (g) + CO (g) H 2(g) + CO 2(g) THE EQUILIBRIUM POSITION: Whether the reaction lies far to the right or to the left depends on three main factors. Initial concentrations (more collisions- faster reaction) Relative energies of reactants and products (nature goes to minimum energy) Degree of organization of reactants and products (nature goes to maximum disorder) The significance of K: K> 1 means that the reaction favors the products at equilibrium K < 1 means that the reaction favors the reactants at equilibrium THE EQUILIBRIUM EXPRESSION: A general description of the equilibrium condition proposed by Gudberg and Waage in 1864 is known as the Law of Mass Action. Equilibrium is temperature dependent, however, it does not change with concentration or pressure.! equilibrium constant expression--for the general reaction aa + bb cc + dd Equilibrium constant: K = [C] c [D] d [A] a [B] b * Note* K, K c, K eq may all be used here! The product concentrations appear in the numerator and the reactant concentrations in the denominator. Each concentration is raised to the power of its stoichiometric coefficient in Lisa McGaw, AP Strategies, Inc. 1

the balanced equation. " [ ] indicates concentration in Molarity " K c --is for concentration (aqueous) " K p --is for partial pressure (gases) " K values are often written without units! USING EQUILIBRIUM CONSTANT EXPRESSIONS! Pure solids--do not appear in expression you ll see this in K sp problems soon!! Pure liquids--do not appear in expression H 2 O (l) is pure, so leave it out of the calculation! Water--as a liquid or reactant, does not appear in the expression. (55.5M will not change significantly) o Weak acid and weak base equations are heterogeneous [multi-states of matter; pure liquid and aqueous components] equilibria. Water is a pure liquid component (55.5M) in these reactions and is left out. o Solubility of salts also fits into this category. The initial solid component has a constant concentration and is therefore left out of the equilibrium expression. Exercise 1 Writing Equilibrium Expressions Write the equilibrium expression for the following reaction: 4NH 3 (g) + 7O 2 (g) 4NO 2 (g) + 6H 2 O(g) [NO ] [H O] K= [NH ] [O ] 4 6 2 2 4 7 3 2 Exercise 2 Equilibrium Expressions for Heterogeneous Equilibria Write the expressions for K and K p for the following processes: a. The decomposition of solid phosphorus pentachloride to liquid phosphorus trichloride and chlorine gas. b. Deep blue solid copper(ii) sulfate pentahydrate is heated to drive off water vapor to form white solid copper(ii) sulfate. A: K = [Cl 2 ] K p = P Cl2 B: K = [H 2 O] 5 K p = P H2O 5 Lisa McGaw, AP Strategies, Inc. 2

! CHANGING STOICHIOMETRIC COEFFICIENTS " when the stoichiometric coefficients of a balanced equation are multiplied by some factor, the K is raised to the power of the multiplication factor (K n ). 2x is K squared; 3x is K cubed; etc.! REVERSING EQUATIONS " take the reciprocal of K ( 1/K)! ADDING EQUATIONS " multiply respective K=s (K 1 x K 2 x K 3 ) Exercise 3 Calculating the Values of K The following equilibrium concentrations were observed for the Haber process at 127 C: a. Calculate the value of K at 127 C for this reaction. [NH 3 ] = 3.1 X 10-2 mol/l [N 2 ] = 8.5 X 10-1 mol/l [H 2] = 3.1 X 10-3 mol/l b. Calculate the value of the equilibrium constant at 127 C for the reaction: 2NH 3 (g) N 2 (g) + 3H 2 (g) c. Calculate the value of the equilibrium constant at 127 C for the reaction given by the equation: 1/2N 2 (g) + 3/2H 2 (g) NH 3 (g) A: K = 3.8 X 10 4 B: K = 2.6 X 10-5 C: K = 1.9 x 10 2 Lisa McGaw, AP Strategies, Inc. 3

Exercise 4 Equilibrium Positions The following results were collected for two experiments involving the reaction at 600 C between gaseous sulfur dioxide and oxygen to form gaseous sulfur trioxide: Show that the equilibrium constant is the same in both cases. K 1 = 4.36 K 2 = 4.32! K c & K p --NOT INTERCHANGEABLE! K p = K c (RT) Δn where Δn is the change in the number of moles of gas going from reactants to products:! Δn = total moles gas prod. - total moles gas reactants R = universal gas law constant 0.0821 L atm/ mol K T = temperature in Kelvin! Kc = Kp if the number of moles of gaseous product = number of moles of gaseous reactant. Lisa McGaw, AP Strategies, Inc. 4

Exercise 5 Calculating Values of K p The reaction for the formation of nitrosyl chloride 2NO(g) + Cl 2 (g) 2NOCl(g) was studied at 25 C. The pressures at equilibrium were found to be Calculate the value of K p for this reaction at 25 C. P NOCl = 1.2 atm P NO = 5.0 X 10-2 atm P Cl2 = 3.0 X 10-1 atm = 1.9 X 10 3 Exercise 6 Calculating K from K p Using the value of K p obtained in Sample Exercise 13.4, calculate the value of K at 25 C for the reaction: 2NO(g) + Cl 2 (g) 2NOCl(g) = 4.6 X 10 4 Lisa McGaw, AP Strategies, Inc. 5

! MAGNITUDE OF K--what does it mean anyway? When greater than one, formation of products is favored. When less than one, formation of reactants is favored. Can you...??? 1. write an eq. constant expression? 2. tell how K is changed if the stoichiometric coefficients are changed on an equation? 3. tell how to find K for a summary equation? 4. tell how K depends on the way equilibrium concentrations are expressed and how to convert K in terms of Kc vs. Kp? 5. tell what K is telling you about a reaction? THE REACTION QUOTIENT For use when the system is NOT at equilibrium. For the general reaction aa + bb cc + dd Reaction quotient = Q c = [C] c [D] d [A] a [B] b Q c has the appearance of K but the concentrations are not necessarily at equilibrium. 1. If Q<K, the system is not at equilibrium: Reactants products to make Q = K at equil. 2. If Q = K, the system is at equilibrium. 3. If Q>K, the system is not at equilibrium: Reactants products to make Q = K at equil. Quite useful for predicting what will happen under special conditions. Exercise 7 Using the Reaction Quotient For the synthesis of ammonia at 500 C, the equilibrium constant is 6.0 X 10-2. Predict the direction in which the system will shift to reach equilibrium in each of the following cases: a. [NH 3 ] 0 = 1.0 X 10-3 M; [N 2 ] 0 = 1.0 X 10-5 M; [H 2 ] 0 = 2.0 X 10-3 M b. [NH 3 ] 0 = 2.00 X 10-4 M; [N 2 ] 0 = 1.50 X 10-5 M; [H 2 ] 0 = 3.54 X 10-1 M c. [NH 3 ] 0 = 1.0 X 10-4 M; [N 2 ] 0 = 5.0 M; [H 2 ] 0 = 1.0 X 10-2 M A: shift left B: no shift C: shift right Lisa McGaw, AP Strategies, Inc. 6

SOME CALCULATIONS WITH THE EQUILIBRIUM CONSTANT! General steps for solving equilibrium problems. A. Write a balanced equation. (* do stoichiometry first in moles if needed.) B. Set up equilibrium expression. C. Set up RICE diagram. ARICE TABLES--reaction, initial concentration, change in concentration, equil. concentration! Never Fails!! R = write a balanced reaction for the predominant reacting species I = fill in the initial concentrations C = what change is taking in place E = equilibrium concentrations D. Fill in initial concentrations. E. Calculate change in concentration using coefficients or information in the problem. F. Solve for equilibrium concentrations. G. Substitute equilibrium concentrations into the K expression and calculate. H. Tricks: 1. Look for very small K values (where K < 10-5 ), "x" may be negligible. You must check validity by plugging "x" over original concentration. It must be less than 5% of the original concentration to be valid. 2. If "x" is necessary, then see if the problem may be a perfect square and thus, ease the steps of solving. (Sometimes you must use the quadratic formula!) 3. If none of the initial concentrations are zero, then Q must be calculated first to determine the direction of the shift before following the above general steps. Exercise 8 Calculating Equilibrium Pressures I Dinitrogen tetroxide in its liquid state was used as one of the fuels on the lunar lander for the NASA Apollo missions. In the gas phase it decomposes to gaseous nitrogen dioxide: N 2 O 4 (g) 2NO 2 (g) Consider an experiment in which gaseous N 2 O 4 was placed in a flask and allowed to reach equilibrium at a temperature where K p = 0.133. At equilibrium, the pressure of N 2 O 4 was found to be 2.71 atm. Calculate the equilibrium pressure of NO 2 (g). = 0.600 Lisa McGaw, AP Strategies, Inc. 7

Exercise 9 Calculating Equilibrium Pressures II At a certain temperature a 1.00-L flask initially contained 0.298 mol PCl 3 (g) and 8.70 X 10-3 mol PCl 5 (g). After the system had reached equilibrium, 2.00 X 10-3 mol Cl 2 (g) was found in the flask. Gaseous PCl 5 decomposes according to the reaction PCl 5 (g) PCl 3 (g) + Cl 2 (g) Calculate the equilibrium concentrations of all species and the value of K. [Cl 2 ] = 2.00 X 10-3 M [PCl 3 ] = 0.300 M [PCl 5 ] = 6.70 X 10-3 M K = 8.96 X 10-2 Exercise 10 Calculating Equilibrium Concentrations I Carbon monoxide reacts with steam to produce carbon dioxide and hydrogen. At 700 K the equilibrium constant is 5.10. Calculate the equilibrium concentrations of all species if 1.000 mol of each component is mixed in a 1.000-L flask. Lisa McGaw, AP Strategies, Inc. 8 [CO] = [H 2 O] = 0.613 M [CO 2 ] = [H 2 ] = 1.387 M

Exercise 11 Calculating Equilibrium Concentrations II Assume that the reaction for the formation of gaseous hydrogen fluoride from hydrogen and fluorine has an equilibrium constant of 1.15 X 10 2 at a certain temperature. In a particular experiment, 3.000 mol of each component was added to a 1.500-L flask. Calculate the equilibrium concentrations of all species. [H 2 ] = [F 2 ] = 0.472 M [HF] = 5.056 M Exercise 12 Calculating Equilibrium Pressures Assume that gaseous hydrogen iodide is synthesized from hydrogen gas and iodine vapor at a temperature where the equilibrium constant is 1.00 X 10 2. Suppose HI at 5.000 X 10-1 atm, H 2 at 1.000 X 10-2 atm, and I 2 at 5.000 X 10-3 atm are mixed in a 5.000-L flask. Calculate the equilibrium pressures of all species. P HI = 4.29 X 10-1 atm P H2 = 4.55 X 10-2 atm P I2 = 4.05 X 10-2 atm Lisa McGaw, AP Strategies, Inc. 9

EXTERNAL FACTORS AFFECTING EQUILIBRIA! Le Chatelier=s Principle: If a stress is applied to a system at equilibrium, the position of the equilibrium will shift in the direction which reduces the stress.! Shifts occur to reestablish equilibrium positions. Think about Q!! Temperature--exothermic heat is a product; endothermic heat is a reactant.! Adding or removing a reagent--shift tries to reestablish Q.! Pressure--increase favors the side with the least # of gas moles; the converse is also true. (a) mixture at equilibrium (b) volume is suddenly decreased (c) new equilibrium position! catalysts--no EFFECT on K; just gets to equilibrium faster! Lisa McGaw, AP Strategies, Inc. 10

Exercise 13 Using Le Chatelier s Principle I Arsenic can be extracted from its ores by first reacting the ore with oxygen (called roasting) to form solid As 4 O 6, which is then reduced using carbon: As 4 O 6 (s) + 6C(s) As 4 (g) + 6CO(g) Predict the direction of the shift of the equilibrium position in response to each of the following changes in conditions. a. Addition of carbon monoxide b. Addition or removal of carbon or tetraarsenic hexoxide (As 4 O 6 ) c. Removal of gaseous arsenic (As 4 ) A: shift left B: no shift C: shift right Exercise 14 Using Le Chatelier s Principle II Predict the shift in equilibrium position that will occur for each of the following processes when the volume is reduced. a. The preparation of liquid phosphorus trichloride by the reaction: P 4 (s) + 6Cl 2 (g) 4PCl 3 (l) b. The preparation of gaseous phosphorus pentachloride according to the equation: PCl 3 (g) + Cl 2 (g) PCl 5 (g) c. The reaction of phosphorus trichloride with ammonia: PCl 3 (g) + 3NH 3 (g) P(NH 2 ) 3 (g) + 3HCl(g) A: shift right B: shift right C: no shift Lisa McGaw, AP Strategies, Inc. 11

Exercise 15 Using Le Chatelier s Principle III For each of the following reactions, predict how the value of K changes as the temperature is increased. a. N 2 (g) + O 2 (g) 2NO(g) H = 181 kj b. 2SO 2 (g) + O 2 (g) 2SO 3 (g) H = -198 kj A: increases B: decreases Lisa McGaw, AP Strategies, Inc. 12