Lesson 4: Strategies for Solving Simultaneous Equations (Substitution)

Similar documents
Lesson 28: Another Computational Method of Solving a Linear System

5.2.3 Systems of Equations (Substitution Method)

Analyzing and Solving Pairs of Simultaneous Linear Equations

SOLVING EQUATIONS AND DEVELOPING THE FOUNDATION FOR PROOFS

Lesson Multi-Step Equations With Distributive Property

Warm Up. Unit #1: Basics of Algebra

Lesson 30: Linear Systems in Three Variables

Algebra I. Systems of Linear Equations and Inequalities. Slide 1 / 179. Slide 2 / 179. Slide 3 / 179. Table of Contents

Lesson 12: Systems of Linear Equations

Enhanced Instructional Transition Guide

2275 Speedway, Mail Code C9000 Austin, TX (512) Weather and Climate

Enhanced Instructional Transition Guide

Essential Question How can you use substitution to solve a system of linear equations?

Total=75 min. Materials BLM cut into cards BLM

Unit 5 Equations and Inequalities Math 6

C. Graph the solution to possibilities for Sharmara s number and give the solution in interval notation.

Algebra I. Systems of Linear Equations and Inequalities. 8th Grade Review. Slide 1 / 179 Slide 2 / 179. Slide 4 / 179. Slide 3 / 179.

Lesson 5: Criterion for Perpendicularity

Lesson 19: Understanding Variability When Estimating a Population Proportion

Enhanced Instructional Transition Guide

Lesson 7: Classification of Solutions

Due for this week. Slide 2. Copyright 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Lesson 8: Graphs of Simple Non Linear Functions

8.EE The Intersection of Two

Unit 4 Systems of Linear Equations

Table of Contents. Introduction to the Series...1. Chapter 5: Rational Expressions...55 Rational Expressions...55 Scientific Notation...

Lesson 24: True and False Number Sentences

PLEASANTON UNIFIED SCHOOL DISTRICT 8 Course Outline Form

Lesson 18: Recognizing Equations of Circles

THANK YOU FOR YOUR PURCHASE!

Eureka Math. Grade 8, Module 7. Teacher Edition

a. Do you think the function is linear or non-linear? Explain using what you know about powers of variables.

Complete Unit 6 Package

Mathematics. Unit 2: Reasoning with Equations and Inequalities

Prompt. Commentary. Mathematical Foci. x + 2 =4 x + 2=4 and x + 2=" 4 x =2 x =" 6

Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A4b & MM2A4c Time allotted for this Lesson: 9 hours

Algebra Unit 6 Test review white boards notea.notebook. February 02, y = y = a) (-3, -2) b) (1, -3) c) (0, -1) c) (2, 3) a) ( 1, 3) d) ( 3, 1)

Sequence of Math 8 SDC Units Aligned with the California Standards

2275 Speedway, Mail Code C9000 Austin, TX (512) Planet Fun

Georgia Standards of Excellence Frameworks Mathematics

Integer Division. Student Probe

Quarter 2 400, , , , , , ,000 50,000

New York City Scope and Sequence for CMP3

New York State Testing Program Grade 8 Common Core Mathematics Test. Released Questions with Annotations

Lesson 14: From Ratio Tables, Equations, and Double Number Line Diagrams to Plots on the Coordinate Plane

courses involve systems of equations in one way or another.

Eureka Lessons for 6th Grade Unit FIVE ~ Equations & Inequalities

Unit 5 Equations and Inequalities

Mathematics Success Grade 8

Topic: Solving systems of equations with linear and quadratic inequalities

Simultaneous Linear Equations 8. EE.C.8a, 8.EE.C.8c Conceptual Understanding and Application Mini-Assessment by Student Achievement Partners

Student Outcomes. Lesson Notes. Classwork. Opening Exercise (5 minutes)

Inequalities Chapter Test

Objective: Construct a paper clock by partitioning a circle into halves and quarters, and tell time to the half hour or quarter hour.

Common Core State Standards for Mathematical Practice (6-8)

Algebra I System of Linear Equations

( ) 2. Equations with Radical Expressions. Algebra 2

Prentice Hall Mathematics Common Core Course

Chapter 9: Equations and Inequalities

Building Concepts: Solving Systems of Equations Algebraically

Lesson 23: The Defining Equation of a Line

Bassam Raychouni Pre-Algebra. Course Title: Head of Department:

New York City Scope and Sequence for CMP3

Understanding and Using Variables

Instruction. Student Activities Overview and Answer Key

MATHEMATICS TIPS (MARCH 2018) Leo Ramirez Sr. (The Wizard Maker)

MAC-CPTM Situations Project. Situations 24: Absolute Value Equations and Inequalities

Energy It s In The Bag Understanding Potential and Kinetic Energy Time approximately 1 class period

Factoring. Expressions and Operations Factoring Polynomials. c) factor polynomials completely in one or two variables.

Algebra 1, Quarter 2, Unit 2.1. Linear Functions. Overview

Lesson 11: The Special Role of Zero in Factoring

Enhanced Instructional Transition Guide

Common Core State Standards for Mathematics

Agile Mind Mathematics 6 Scope and Sequence, Common Core State Standards for Mathematics

Unit 5 SIMULTANEOUS LINEAR EQUATIONS

Looking Ahead to Chapter 10

UNIT 4 EQUATIONS AND INEQUALITIES Established Goals: Standards

Lesson 23 Linear Equations With One Variable

Unit 6. Systems of Linear Equations. 3 weeks

October 5 th October 9 th. Unit 2: Equations & Inequalities

1.9 lbs lbs lbs. HOW MUCH DOES EACH BALL WEIGH?

Texas Essential Knowledge and Skills. apply mathematics to problems arising in everyday life, society, and the workplace;

Common Core State Standards for Mathematics

Advanced Grade 6 Math

SFUSD Mathematics Core Curriculum Development Project

Algebra 1 Bassam Raychouni Grade 8 Math. Greenwood International School Course Description. Course Title: Head of Department:

Algebra 2 Summer Review Packet

Sequence of Math 7 Accelerated Units Aligned with the California Standards

Pacing 7th Grade Advanced Math 1st Nine Weeks Introduction to Proportional Relationships. Proportional Relationships and Percentages

LESSON PLAN OUTLINE JMU Elementary Education Program

Lesson: Slope. Warm Up. Unit #2: Linear Equations. 2) If f(x) = 7x 5, find the value of the following: f( 2) f(3) f(0)

Math 1 Variable Manipulation Part 5 Absolute Value & Inequalities

Manipulating Radicals

Lesson 4: Numbers Raised to the Zeroth Power

Math 6 Common Core. Mathematics Prince George s County Public Schools

Math098 Practice Final Test

Agile Mind Mathematics 6 Scope and Sequence, Common Core State Standards for Mathematics

What can I tell from a survey?

Mathematics Lesson Plan

Lesson 5: Negative Exponents and the Laws of Exponents

Transcription:

Lesson 4: Strategies for Solving Simultaneous Equations (Substitution) Brief Overview of Lesson: In this lesson students explore an alternate strategy for solving simultaneous linear equations known as substitution. When the solution of a system of linear equations is an ordered pair that is not located near the origin, or that does not contain whole numbers, the graphic method will not be useful. The substitution method is just one of many algebraic methods, used to solve a system of equations without using its graphs. As you plan, consider the variability of learners in your class and make adaptations as necessary. Prior Knowledge Required: 6.EE.3 Apply the properties of operations to generate equivalent expressions 6.EE.5 Understand solving and equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. 6.EE.7 Solve real-world and mathematical problems by writing and solving equations of the form x +p = q and px = q for cases in which p, q, and x are all known negative rational numbers. 6.EE.9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. 7.EE.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. 7.EE.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. Estimated Time (minutes): Two 50 minute lessons Resources for Lesson: Sample Card Set, Math Teachers Café Handout Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0). Educators may use, adapt, and/or share. Not for Page 70 of 137

Unit: Analyzing and Solving Linear Equations and Pairs of Simultaneous Linear Equations Content Area/Course: Grade 8 Mathematics Lesson 4: Strategies for Solving Simultaneous Equations (Substitution) Time (minutes): Two 50 minute lessons By the end of this lesson students will know and be able to: Solve simultaneous equations by substitution. (S8) Essential Question(s) addressed in this lesson: How can equations be used to represent real-world and mathematical situations? Given a particular problem situation, how do we determine which method of solving simultaneous equations will be the most useful? Standard(s)/Unit Goal(s) to be addressed in this lesson (type each standard/goal exactly as written in the framework): 8.EE.8 Analyze and solve linear equations and pairs of simultaneous linear equations. a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6. c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair. SMP.7 Look for and make use of structure. Teacher Content and Pedagogy There are several methods for solving simultaneous equations, or systems. Students explored graphical models in the previous lesson. When an exact answer is needed, these graphical models have some limitations. One algebraic method is substitution. Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0). Educators may use, adapt, and/or share. Not for Page 71 of 137

This lesson is intended to lead students to uncover the limitations of graphical solutions in some situations and to explore other ways to solve systems of equations. Do not teach the substitution method as a handy trick or procedure. In fact, it is recommended that the method remain unnamed until the end of the lesson. Students need to see the connection between this algebraic method and the point of intersection on the graphs of the two lines. First, students identify if the system has one solution. The point of intersection makes both equations true. If so, students can use the Substitution Property of Equality to create an equation in one variable. The Substitution Property of Equality: If a=b, then a can be substituted for b in any expression containing a. Substitution Students have previously solved equations using substitution when given an exact value for one of the values. This would be a good reference point from which to start. Example 1: Solve the equation y = 5x 7 when x = -2. Example 2: Solve the equation y = 5x 7 when y = 3. In addition to the Activator Activity, algebra balance scales can also be used to provide a visual model of the concept of substitution. Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0). Educators may use, adapt, and/or share. Not for Page 72 of 137

Anticipated Student Preconceptions/Misconceptions Students may not realize that solutions to simultaneous equations are written as a coordinate pair (e.g., x = does not sufficiently describe the point(s) of intersection.) Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0). Educators may use, adapt, and/or share. Not for Page 73 of 137

Lesson Sequence DAY 1 Opening: Revisit the previous day s formative assessment: 4x 2y =3. Ask students: Were you able to create equations that showed at least one solution, no solutions, or infinite solutions? Strategically select student work to display on a document reader or on chart paper. Ask students to turn and talk to discuss the strategies that they see. o What were some strategies for writing the equations? o What difficulties did they have in finding an equation with one solution, no solution, or infinite solutions? o What misconceptions do students have? Consider this system: y = 5x and y = 2x + 2. Students graph this system and determine whether there is one solution, no solutions, or many solutions. Ask students to state the solution. Students should notice the difficulty of finding an exact solution. Using the graphical method, students can only approximate a solution. Have students evaluate both equations for the point (2/3, 10/3). Have students Think, Pair, Share with a partner about the question, Is there another way to solve this problem other than graphing the system on a coordinate grid? When might it be important to find the exact solution? Allow for students to talk about their ideas with each other. Have students share their ideas at the end of this time. If we know that y = 5x and y = 2x + 2, and we know that there is one solution for this system of equations, then there must be one point on the line y = 5x that intersects with one point on the line y = 2x + 2. At that point of intersection, for that same x value, the equations have the same y value. We saw that when x = 2/3, y was 10/3 in both equations. So, (2/3, 10/3) is the point of intersection. Does that mean that 5x and 2x + 2 have the same value at that point? Y = 5x y = 2x + 2 Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0). Educators may use, adapt, and/or share. Not for Page 74 of 137

If y = y at that point of intersection, is it true that 5x = 2x + 2? Can you solve this equation? (Algebraic approach to solving systems.) Students will find the x value. They have to realize that in a system of equations, the solution is a point, with both an x and y value. Post the next two problems on the board and have students try them on their own. Students pair up. One person solves it graphically and finds the point of intersection. The other person solves it algebraically. Compare solutions with each other, and then with another pair. Problem 1: y = x 2 y = -x + 12 (Solution: (7,5)) Problem 2: y = -3x x + y = -2 (Solution: (1, -3)) The word substitute or substitution may come up in the discussions. Mention that this method is often called the substitution method. Ask students why. Connect algebraic representations to visual representations. Problems can be described and solved in multiple ways. As a Ticket to Leave, ask: When might you use the graphing method, and when might you use the substitution method? Students need to analyze the structure of the given equations in order to determine which method to use (SMP.7) Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0). Educators may use, adapt, and/or share. Not for Page 75 of 137

DAY 2 Equation Cards Activity 1. Students work in pairs, using the Sample Cards to practice solving simultaneous equations algebraically. Each pair is given a card set in zip-lock bags. Does the pair of equations have one, no, or infinite solutions? Each zip-lock bag contains two cards. Cards are folded so that there is a front and a back to each card. Cards #1-5 have y isolated in both equations so students can set the equations equal to each other. Cards # 6 10 have either x or y isolated so that one equation can be substituted into the other. 2. Students will then solve the simultaneous equations algebraically using substitution. They put their cards back in their zip-lock bag, and swap with another team. Repeat. 3. Have a few groups go to the board, post, and explain their solutions. Students revisit two examples from the previous day: Example 1: y = x 2 Example 2: y = 3x y = -x + 12 x + y = 20 They graph each pair of equations. How do the solutions compare to those derived from using substitution method on the previous day? Closing: Ticket to Leave: Students write a response: What are the advantages of solving simultaneous equations with graphing? What are the advantages of solving them with the substitution method? Which one makes more sense to you? Assign Homework: Math Teachers Café (practice solving simultaneous equations with substitution) Preview outcomes for the next lesson: Students will be able to use a variety of strategies to solve systems of equations, including graphing, substitution, and elimination. Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0). Educators may use, adapt, and/or share. Not for Page 76 of 137

Lesson 4: Sample Card Set Card Set #1: y 5 x 8 y 5 x + 3 Card Set #2: y 7 x 21 Page 77 of 137

y 5 x + 9 Card Set #3 y -3 x + ¼ y -5 x ¾ Page 78 of 137

Card Set #4 y 2/3 x + 7 y 1/3 x + 9 Card Set #5 y -2 x + 7 y x x + 3 + 4 Page 79 of 137

Card Set #6 y 4 x 1 2 x - y = 5 2x ( ) = 5 Card Set #7 x 2 y + 4 2x y = 5 2( ) y = 5 Page 80 of 137

Card Set #8 y 2/5 x 3-2x = -3 y 5-2x = 3 ( ) 5 Card Set #9 x -1/4 y + 3-4x + y = 20-4 ( ) + y = 20 Page 81 of 137

Card Set #10 y 1/3x 7 x + y = 1 3 2 x + ( ) = 1 3 2 Page 82 of 137

Answer Key Card Set #1 No Solution -8 3 Card Set #2 One Solution (15, 84) Card Set #3 One Solution (-1/2, 7/4) Card Set #4 One Solution (6, 11) Card Set #5 Infinitely Many Solutions -2x + 7 = -x x +3 + 4 Card Set #6 One Solution (-2, -9) Card Set #7 One Solution (-1, 2) Card Set #8 Infinitely Many Solution 2/5x 3 = 2/5x 3 Card Set #9 One Solution (7/8, 17/2) Card Set #10 No Solution -7 ½ Page 83 of 137

Lesson 4: Math Teachers Café Name: Class: Date: Solving Systems Using Substitution Jokingly Directions Show all work on a separate piece of paper. Solve each system of equations by the substitution method. Then, write the word next to the correct answer in the box containing the selected solutions. What s the best dessert in the Math Teachers Café? Answer to #4 Answer to #1 Answer to #6 Answer to #7 Answer to #9! 1. y = 5x 2. 2x + 5y = 26 3. B 3a = 1 x + y = 30 y = x/4 b = 4a 4. 4p + 2q = 10 5. 5c 2d = 0 6. 3s t = 1 p 5q = 8 6d = 1 + c 3s = 9 7. The sum of two numbers is 36 and their difference is 6. What are the numbers? 8. There are 312 students at the school dance. There are 48 more girls than boys. How many girls are at the dance? How many boys are at the dance? 9. The school s Drama Club charges $10 for an adult ticket and $5 for a child s ticket. One night 410 tickets are sold for a total of $3625. How many adults attended the show? How many children attended the show? Answer Options: ( 180, 132) vanilla (3,8) of ( 24, 6 ) One (3, -1) A (1, 4) piece ( 21, 15) chocolate (5, 25) slice ( 315, 95) pi (1/14, 5/28) cake Page 84 of 137

Math Teachers Café ANSWER KEY Solving Systems Using Substitution Jokingly Directions Show all work on a separate piece of paper. Solve each system of equations by the substitution method. Then, write the word next to the correct answer in the box containing the selected solutions. Answer to #4 A What s the best dessert in the Math Teachers Café? Answer to #1 Answer to #6 Answer to #7 Answer to #9 slice of chocolate pi! 9. y = 5x 2. 2x + 5y = 26 3. B 3a = 1 x + y = 30 y = x/4 b = 4a (5, 25) (24, 6) (1, 4) 4. 4p + 2q = 10 5. 5c 2d = 0 6. 3s t = 1 p 5q = 8 6d = 1 + c 3s = 9 (3, -1) (1/14, 5/28) (3, 8) 7. The sum of two numbers is 36 and their difference is 6. What are the numbers? (21, 15) 8. There are 312 students at the school dance. There are 48 more girls than boys. How many girls are at the dance? How many boys are at the dance? (180, 132) 10. The school s Drama Club charges $10 for an adult ticket and $5 for a child s ticket. One night 410 tickets are sold for a total of $3625. How many adults attended the show? How many children attended the show? (315, 95) Page 85 of 137