ON A CONNECTION BETWEEN THE DISCRETE FRACTIONAL LAPLACIAN AND SUPERDIFFUSION

Similar documents
ON A CONNECTION BETWEEN THE DISCRETE FRACTIONAL LAPLACIAN AND SUPERDIFFUSION

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

arxiv:math/ v1 [math.pr] 25 Mar 2005

A SEMIGROUP APPROACH TO FRACTIONAL POISSON PROCESSES CARLOS LIZAMA AND ROLANDO REBOLLEDO

ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP

IMPROVEMENTS OF COMPOSITION RULE FOR THE CANAVATI FRACTIONAL DERIVATIVES AND APPLICATIONS TO OPIAL-TYPE INEQUALITIES

A TRANSFORM INVOLVING CHEBYSHEV POLYNOMIALS AND ITS INVERSION FORMULA

A REPRESENTATION THEOREM FOR ORTHOGONALLY ADDITIVE POLYNOMIALS ON RIESZ SPACES

On the Finite Caputo and Finite Riesz Derivatives

SINGULAR CURVES OF AFFINE MAXIMAL MAPS

Properties of a New Fractional Derivative without Singular Kernel

arxiv: v1 [math.ap] 26 Mar 2013

SOLUTIONS OF TWO-TERM TIME FRACTIONAL ORDER DIFFERENTIAL EQUATIONS WITH NONLOCAL INITIAL CONDITIONS

Spectral functions of subordinated Brownian motion

On boundary value problems for fractional integro-differential equations in Banach spaces

Dissipative quasi-geostrophic equations with L p data

Research Article Solvability for a Coupled System of Fractional Integrodifferential Equations with m-point Boundary Conditions on the Half-Line

NOTE ON HILBERT-SCHMIDT COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES

AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR p-harmonic FUNCTIONS. To the memory of our friend and colleague Fuensanta Andreu

AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR p-harmonic FUNCTIONS

On Bessel Functions in the framework of the Fractional Calculus

A generalized Gronwall inequality and its application to fractional differential equations with Hadamard derivatives

DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL DIFFUSION EQUATION

Positive solutions for a class of fractional boundary value problems

AN EXTENSION OF THE LAX-MILGRAM THEOREM AND ITS APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS

DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM

DIfferential equations of fractional order have been the

Some asymptotic properties of solutions for Burgers equation in L p (R)

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED

AN ADDITIVE PROBLEM IN FINITE FIELDS WITH POWERS OF ELEMENTS OF LARGE MULTIPLICATIVE ORDER

arxiv: v1 [math.ap] 18 May 2017

Nonlocal Fractional Semilinear Delay Differential Equations in Separable Banach spaces

RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS. = Au(t), t > 0 u(0) = x,

be the set of complex valued 2π-periodic functions f on R such that

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

Free boundaries in fractional filtration equations

THE RIESZ TRANSFORM FOR THE HARMONIC OSCILLATOR IN SPHERICAL COORDINATES

Integro-differential equations: Regularity theory and Pohozaev identities

A truncation regularization method for a time fractional diffusion equation with an in-homogeneous source

arxiv:math/ v2 [math.ap] 3 Oct 2006

On the local existence for an active scalar equation in critical regularity setting

Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Boundary Conditions

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions

SOME RESULTS FOR BOUNDARY VALUE PROBLEM OF AN INTEGRO DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER

Numerical study of time-fractional hyperbolic partial differential equations

On the least values of L p -norms for the Kontorovich Lebedev transform and its convolution

Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005

A path integral approach to the Langevin equation

SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm. Abstract

Initial value problems for singular and nonsmooth second order differential inclusions

Heat-diffusion maximal operators for Laguerre semigroups with negative parameters

Handling the fractional Boussinesq-like equation by fractional variational iteration method

Sign changes of Fourier coefficients of cusp forms supported on prime power indices

arxiv:math/ v1 [math.ap] 28 Oct 2005

Symbolic Solution of Kepler s Generalized Equation

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 )

Reproducing formulas associated with symbols

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang

Existence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

The Fractional Laplacian

Smooth pointwise multipliers of modulation spaces

Dispersion for the Schrodinger Equation on discrete trees

HOW TO APPROXIMATE THE HEAT EQUATION WITH NEUMANN BOUNDARY CONDITIONS BY NONLOCAL DIFFUSION PROBLEMS. 1. Introduction

Properties of the Scattering Transform on the Real Line

On the fixed point theorem of Krasnoselskii and Sobolev

ELEMENTARY APPLICATIONS OF FOURIER ANALYSIS

Dunkl operators and Clifford algebras II

Hamburger Beiträge zur Angewandten Mathematik

The complex periodic problem for a Riccati equation

Richard F. Bass Krzysztof Burdzy University of Washington

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

arxiv: v1 [math.ap] 28 Mar 2014

A NONLINEAR DIFFERENTIAL EQUATION INVOLVING REFLECTION OF THE ARGUMENT

arxiv: v1 [math.ca] 23 Oct 2018

Pythagorean Property and Best Proximity Pair Theorems

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction

WEAK TYPE ESTIMATES FOR SINGULAR INTEGRALS RELATED TO A DUAL PROBLEM OF MUCKENHOUPT-WHEEDEN

Isogeometric Analysis for the Fractional Laplacian

Finite-time Blowup of Semilinear PDEs via the Feynman-Kac Representation. CENTRO DE INVESTIGACIÓN EN MATEMÁTICAS GUANAJUATO, MEXICO

On the translation invariant operators in l p (Z d )

ON HÖRMANDER S CONDITION FOR SINGULAR INTEGRALS

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

Transformations of Self-Similar Solutions for porous medium equations of fractional type

Qualitative Properties of Numerical Approximations of the Heat Equation

Research Article Existence and Uniqueness of the Solution for a Time-Fractional Diffusion Equation with Robin Boundary Condition

ON WEIGHTED INEQUALITIES FOR FRACTIONAL INTEGRALS OF RADIAL FUNCTIONS. dy, 0 < γ < n. x y

Elena Gogovcheva, Lyubomir Boyadjiev 1 Dedicated to Professor H.M. Srivastava, on the occasion of his 65th Birth Anniversary Abstract

OSGOOD TYPE REGULARITY CRITERION FOR THE 3D NEWTON-BOUSSINESQ EQUATION

Derivatives of Harmonic Bergman and Bloch Functions on the Ball

High Order Numerical Methods for the Riesz Derivatives and the Space Riesz Fractional Differential Equation

NONLINEAR DIFFERENTIAL INEQUALITY. 1. Introduction. In this paper the following nonlinear differential inequality

ON THE DYNAMICAL SYSTEMS METHOD FOR SOLVING NONLINEAR EQUATIONS WITH MONOTONE OPERATORS

Wave Packets. Eef van Beveren Centro de Física Teórica Departamento de Física da Faculdade de Ciências e Tecnologia Universidade de Coimbra (Portugal)

Applied Mathematics Letters

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E,

Folland: Real Analysis, Chapter 8 Sébastien Picard

We denote the space of distributions on Ω by D ( Ω) 2.

1 Math 241A-B Homework Problem List for F2015 and W2016

Brunn-Minkowski inequality for the 1-Riesz capacity and level set convexity for the 1/2-Laplacian

Transcription:

ON A CONNECTION BETWEEN THE DISCRETE FRACTIONAL LAPLACIAN AND SUPERDIFFUSION ÓSCAR CIAURRI, CARLOS LIZAMA, LUZ RONCAL, AND JUAN LUIS VARONA Abstract. We relate the fractional powers of the discrete Laplacian with a standard timefractional derivative in the sense of Liouville by encoding the iterative nature of the discrete operator through a time-fractional memory term.. Introduction Let < α < be given. Our concern in this paper is the study of the connection between two seemingly distinct classes of partial differential equations that have a mixed character, i.e. that can be modeled both in continuous time as well as in discrete space ) D t vn, t) = d ) α vn, t), t >, n Z, and ) D /α t un, t) = d )un, t), t >, n Z. In ), D t denotes the continuous derivative in the variable t, D /α t denotes the fractional derivative of order /α in the sense of Liouville left-sided) and d ) α denotes the fractional powers of order α of the unidimensional discrete Laplacian, introduced in [3] where other operators in Harmonic Analysis, such as the discrete Riesz transform, square functions, conjugate harmonic functions and the Poisson semigroup were also studied). See Section for definitions. For β := α >, equation ) describes superdiffusive phenomena in time. It models anomalous superdiffusion in which a particle cloud spreads faster than the classical diffusion model predicts. The connection between order in time and space for partial differential equations is a surprising phenomena that seems not to be addressed for the discrete fractional Laplacian. It shows that the spatial-laplacian of fractional order is entirely translated into temporal regularization. First studies on this unexpected property appear in [7] for the unidimensional continuous Laplacian. There, it was observed that ordinary PDEs of first order in space are transformed into PDEs of half-th order in time and second order in space, and that from an applied perspective Stokes problem) this property shows numerical advantages. For the N-dimensional and continuous bi-laplacian, the connection appeared in [5, Example.4], where also an abstract setting for higher powers is studied. For stochastic processes the relation seems to be more analyzed, but only very recently by H. Allouba [] and B. Baeumer, M.M. Meerschaert and E. Nane [, Theorems 3. and 3.9]. See also the references therein. In this paper we are able to prove that, for appropriate initial values in the Lebesgue space l Z) and < α <, the solution of problems ) and ) is the same, and that it admits THIS PAPER HAS BEEN PUBLISHED IN: Appl. Math. Lett. 49 5), 9 5. Mathematics Subject Classification. 35R; 6A33; 34A8; 35J5; 6J6. Key words and phrases. Discrete Laplacian, superdiffusion, heat semigroup, fractional Laplacian, modified Bessel functions. The first, third and fourth authors are partially supported by DGI grant number MTM-3673-C3-. The third author is also partially supported by the mobility grant José Castillejo number CAS4/37 from Ministerio de Educación, Cultura y Deporte of Spain. The second author is partially supported by FONDECYT grant number 458.

Ó. CIAURRI, C. LIZAMA, L. RONCAL, AND J. L. VARONA an explicit representation in convolution form by means of a special kernel. This is shown in Theorem 3, that is the main result of this work. We define the discrete fractional Laplacian via the discrete Fourier transform, because this way is the most suitable to prove Theorem 3. Moreover, this definition coincides with the genuine definition of the fractional powers of a more general linear second order partial differential operator L by means of the semigroup generated by L, as shown by P.R. Stinga and J.L. Torrea in [5]. In particular, we provide the discrete counterpart of the formula for the fractional Laplacian via the semigroup due to Stinga and Torrea [5]; it is presented in Theorem and has its own interest.. Preliminaries In order to establish and clarify the meaning of the equations ) and ), and the relationship between their solutions, we need to define several continuous and discrete operators. In particular, in what follows we are going to give precise definitions for several kinds of Fourier transforms and fractional operators on some spaces, and to provide some of their properties. For a given sequence f, we define the discrete Fourier transform F Z f)θ) = n Z fn)e inθ, θ T, where T R/Z) is the unidimensional torus, that we identify with the interval, π]. The inverse discrete Fourier transform is obtained by the formula for a given function ϕ. Therefore It is easily verified that F Z ϕ)n) = fn) = ϕθ)e inθ dθ, n Z, F Z f)θ)e inθ dθ, n Z. F Z f g)θ) = F Z f)θ)f Z g)θ), where denotes the usual convolution in Z. We are going to motivate our definition of the discrete fractional Laplacian; the details can be seen in [3]. Observe that from the discrete Laplacian d fn) := fn + ) fn) + fn ), n Z such as defined in [4]), and using the identity sin θ = cos θ, we obtain F Z d f)θ) = 4 sin θ/)f Z f)θ). Let f l Z) be given. By taking the inverse discrete Fourier transform, the discrete fractional Laplacian of order α > is then defined by 3) d ) α fn) := K α n k)fk), n Z, where Then, it is clear that K α n) := 4 sin θ/)) α e inθ dθ, n Z. 4) F Z K α )θ) = 4 sin θ/)) α, θ, π].

ON A CONNECTION 3.3-5 - -5 5 5.7.9 - - Figure. Graphical representation of + n α+ )K α n) for α =.3,.7,.9 and. Remark. Using [3, formula.5. ), p. 4] we obtain the following explicit expression for the kernel K α n) in terms of the Gamma function: 5) K α n) = ) n Γα + ) Γ + α + n)γ + α n), n Z. In particular, it shows that definition 3) coincides with the generalized fractional difference corresponding to the type central derivative considered by M.D. Ortigueira in [, ]. See also [, formula ) and formula 36)]. Because of this connection, some properties for the discrete Laplacian can be directly deduced. For example, associativity d ) α d ) β = d ) α+β provided α + β >. Moreover, K α n) Γα + ) n α, π n ±, see [, formula 4.4)]. In particular, it shows that the series on the right hand side of 3) converges for f l Z). For other properties, we refer to [, Section.]. In Figure we show the aspect of K α n) for 5 n 5) for several values of the parameter α; actually, to compensate the big decay of K α n) when n ± and to get a more significative picture, we represent the kernel multiplied by + n α+. In particular, we clearly observe that K α n) > only when n = of course, this can be also proved from 5)). From this and the identity d ) α fn) := K α n k)fk) = k n K α n k)fk) + K α )fn) we deduce that d ) α fn ) whenever fk) for all k n and fn ). It extends [3, Theorem ]. In what follows, we present the definition and some properties of the Liouville fractional derivative on the whole axis R. More detailed information may be found in the book [6, Chapter II, Section.3]. We denote 6) g β t) := tβ, t >, β >, Γβ)

4 Ó. CIAURRI, C. LIZAMA, L. RONCAL, AND J. L. VARONA and in case β = we set g t) := δ, the Dirac measure concentrated at the origin. Recall also the well-known formula for the Gamma function 7) e λt g β t) dt =, λ >, β > ; λβ see, for instance, [3, formula.3.3 ), p. 3]. The Liouville left-sided) fractional derivative of order α > is defined by t Dt α ht) = dn dt n g n α t s)hs) ds where n = α +, t R. In particular, when α = m N, then Dt ht) = ht) and Dt m ht) = h m) t) where h m) t) is the usual derivative of ht) of order m. Let h be in the N-dimensional Schwartz s class S. The Fourier transform of h is given by F R N h)ξ) = ) N/ R N hx)e ix ξ dx, ξ R N. We recall that the continuous fractional Laplacian ) α with < α < can be defined in several equivalent ways. It is defined via the Fourier transform as F R N ) α h)ξ) = ξ α F R N h)ξ). An equivalent definition, obtained by computing the inverse Fourier transform see [8]), is given by the singular integral ) α hx) hy) hx) = C N,α P.V. dy, R N x y N+α where C N,α is an explicit positive constant. A comparable formula, that avoids the computation of the inverse Fourier transform, and provides the pointwise formula above in a simple way, can be found for example in [4, Lemma., p. 35]: ) α hx) = Γ α) where e t is the heat-diffusion semigroup. e t hx) hx)) dt t +α 3. The discrete Laplacian and superdiffusion We recall from [3, Section ] that the discrete heat semigroup is defined by e t d fn) := m Z e t I n m t)fm), where I k is the modified Bessel function of the first kind and order k Z, defined as t ) m+k. I k t) = m! Γm + k + ) m= Several properties of I k are listed in [3, Section 8]. In [3, Proposition ] it was proved that {e t d} t is a positive Markovian diffusion semigroup. Moreover, for each ϕ l, the function un, t) = e t dϕn) is a solution of the discrete heat equation, that is ) with α =. The following result corresponds to the discrete counterpart of the formula with the semigroup for the fractional Laplacian [5, Lemma 5.]. Theorem. For all < α < and f l Z) the following holds: d ) α fn) = Γ α) e t d fn) fn)) dt, n Z. t+α

ON A CONNECTION 5 Proof. By definition 3) and the identity 4) we have On the other hand, we have F Z d ) α f)θ) = F Z K α )θ)f Z f)θ) = 4 sin θ/)) α F Z f)θ). F Z e t d f)θ) = e 4t sin θ/) F Z f)θ), see the proof of iii) in [3, Proposition ]. The claim then follows from the identity Γ α) e 4t sin θ/) ) dt t +α = 4 sin θ/)) α, that can be proven using integration by parts and the formula 7). Let α > be given. We define Kt α n) := α 4 e t sin ) θ e inθ dθ, t R, n Z. The following is the main result of this paper. Theorem 3. For every α that satisfies < α < and ϕ l Z), the function 8) un, t) = K α t n k)ϕk), t, n Z, solves the problems 9) and ) { Dt un, t) = d ) α un, t), t >, n Z, un, ) = ϕn), n Z, { D /α t un, t) = d )un, t), t >, n Z, un, ) = ϕn), n Z. Proof. We first prove that 8) solves 9). Indeed, by taking discrete Fourier transform in the variable n, the equation 9) becomes αfz D t F Z u, t))θ) = 4 sin θ ) ) u, t))θ), t >, F Z u, ))θ) = F Z ϕ)θ), and a solution to ) is F Z u, t))θ) = e t 4 sin θ ) α F Z ϕ)θ), t >. Now, by applying inverse discrete Fourier transform, we have un, t) = ) α 4 e t sin θ e inθ F Z ϕ)θ) dθ = ) α 4 e t sin θ e inθ ϕk)e ikθ dθ = ϕk) ) α 4 e t sin θ e in k)θ dθ = ϕk)kt α n k). Secondly, we prove that 8) solves ). In fact, we have D /α t un, t) = D /α t Kt α n k)ϕk) where, by interchanging the order of integration, D /α t K α t n) = ) α D /α t e ) 4 sin θ t)e inθ dθ.

6 Ó. CIAURRI, C. LIZAMA, L. RONCAL, AND J. L. VARONA Since < α <, there exists m N such that m+ < α m for m N \ {}, or m+ < α < m for m =. Remembering the notation for g β in 6), we obtain ) t e ) 4 sin θ α)t) = dm+ α 4 g m+ /α t s)e s sin ) θ ds D /α t dt m+ = dm+ ) α) 4 dt m+ e t sin θ α 4 g m+ /α τ)e τ sin ) θ dτ = 4 sin θ ) m+)αe α t 4 sin ) θ ) 4 sin θ m+ /α )α = 4 sin θ ) α )e t 4 sin θ, where we used 7) in the third equality. It is well known that the β-order Liouville left-sided) fractional derivative D β t of e λt is λ β e λt, for λ > ; see, for example, [6, formula.3.), p. 88] or [9, Example.6]. We give here a direct proof for the sake of completeness.) Therefore ) D /α t un, t) = π α ) 4 cos θ)e t sin ) θ e in k)θ dθ ϕk). On the other hand, using 8) we have d un, t) = un +, t) un, t) + un, t) = K α t n + k) K α t n k) + K α t n k) ) ϕk) 3) = = α 4 e t sin ) θ e in k+)θ e in k)θ + e in k )θ) ) dθ ϕk) α ) 4 e t sin ) θ cos θ )e in k)θ dθ ϕk). Combining ) with 3) we obtain ). Remark 4. We note that if α, then < α in ), and then the equation should have two initial conditions. By using 3), a calculation shows that in such case the second initial condition reads u t n, ) = d ) α ϕn). More generally, if m+ α < m, m N, then we have m extra initial conditions in ) and they are u t n, ) = d ) α ϕn), u tt n, ) = d ) α ϕn),..., u m) t n, ) = d ) mα ϕn). References [] H. Allouba, Time-fractional and memoryful k SIEs on R + R d : how far can we push white noise?, Illinois J. Math. 57 3), 99 963. [] B. Baeumer, M.M. Meerschaert, E. Nane, Brownian subordinators and fractional Cauchy problems, Trans. Amer. Math. Soc. 36 9), 395 393. [3] Ó. Ciaurri, T.A. Gillespie, L. Roncal, J.L. Torrea, J.L. Varona, Harmonic analysis associated with a discrete Laplacian, J. Anal. Math., to appear, arxiv:4.9. [4] F. A. Grünbaum, P. Iliev, Heat kernel expansions on the integers, Math. Phys. Anal. Geom. 5 ), 83. [5] V. Keyantuo, C. Lizama, On a connection between powers of operators and fractional Cauchy problems, J. Evol. Equ. ), 45 65. [6] A.A. Kilbas, H.R. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Studies, 44, Elsevier, 6.

ON A CONNECTION 7 [7] V.V. Kulish, J.L. Lage, Application of fractional calculus to fluid mechanics, Journal of Fluids Engineering 4 ), 83 86. [8] N.S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 8, Springer-Verlag, New York, 97. [9] M.M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics, 43, De Gruyter, Berlin,. [] M.D. Ortigueira, Riesz potentials operators and inverses via centred derivatives, Int. J. Math. Math. Sci. 6, Article ID 4839. [] M.D. Ortigueira, Fractional central differences and derivatives, J. Vib. Control 4 8), 55 66. [] M.D. Ortigueira, J.J. Trujillo, A unified approach to fractional derivatives, Commun. Nonlinear Sci. Numer. Simul. 7 ), 55 557. [3] A.P. Prudnikov, A.Y. Brychkov, O.I. Marichev, Integrals and series. Vol.. Elementary functions, Gordon and Breach Science Publishers, New York, 986. [4] P.R. Stinga, Fractional Powers of Second Order Partial Differential Operators: Extension Problem and Regularity Theory, Ph.D. Thesis, Madrid,. [5] P.R. Stinga, J.L. Torrea, Extension problem and Harnack s inequality for some fractional operators, Comm. Partial Differential Equations 35 ), 9. Ó. Ciaurri, L. Roncal, and J. L. Varona) Departamento de Matemáticas y Computación, Universidad de La Rioja, 64 Logroño, Spain E-mail address: {oscar.ciaurri,luz.roncal,jvarona}@unirioja.es C. Lizama) Universidad de Santiago de Chile, Facultad de Ciencias, Departamento de Matemática y Ciencia de la Computación, Casilla 37, Correo, Santiago, Chile E-mail address: carlos.lizama@usach.cl