DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

Similar documents
Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Digital Signal Processing, Fall 2006

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform (DFT)

Chapter 4 - The Fourier Series

Lectures 9 IIR Systems: First Order System

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

A Simple Proof that e is Irrational

UNIT 2: MATHEMATICAL ENVIRONMENT

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS

PURE MATHEMATICS A-LEVEL PAPER 1

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

DFT: Discrete Fourier Transform

1985 AP Calculus BC: Section I

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

15/03/1439. Lectures on Signals & systems Engineering

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

10. The Discrete-Time Fourier Transform (DTFT)

VI. FIR digital filters

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

A Review of Complex Arithmetic

ELEC9721: Digital Signal Processing Theory and Applications

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN

Problem Value Score Earned No/Wrong Rec -3 Total

Chapter 3 Fourier Series Representation of Periodic Signals

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

On the approximation of the constant of Napier

EEO 401 Digital Signal Processing Prof. Mark Fowler

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

EC1305 SIGNALS & SYSTEMS

Probability & Statistics,

Digital Signal Processing

H2 Mathematics Arithmetic & Geometric Series ( )

ω (argument or phase)

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

10. Joint Moments and Joint Characteristic Functions

Discrete Fourier Series and Transforms

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

An Introduction to Asymptotic Expansions

Restricted Factorial And A Remark On The Reduced Residue Classes

Chapter Taylor Theorem Revisited

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

International Journal of Advanced and Applied Sciences

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

STIRLING'S 1 FORMULA AND ITS APPLICATION

Narayana IIT Academy

Calculus & analytic geometry

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

Session : Plasmas in Equilibrium

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

Ordinary Differential Equations

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Solution to 1223 The Evil Warden.

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

DIGITAL SIGNAL PROCESSING BEG 433 EC

Time Dependent Solutions: Propagators and Representations

Law of large numbers

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments.

Frequency Measurement in Noise

Finite-length Discrete Transforms. Chapter 5, Sections

Chapter 6. The Discrete Fourier Transform and The Fast Fourier Transform

NET/JRF, GATE, IIT JAM, JEST, TIFR

Response of LTI Systems to Complex Exponentials

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

APPENDIX: STATISTICAL TOOLS

Linear Algebra Existence of the determinant. Expansion according to a row.

Frequency Response & Digital Filters

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Chapter (8) Estimation and Confedence Intervals Examples

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)!

ln x = n e = 20 (nearest integer)

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Washington State University

Ordinary Differential Equations

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement

Chapter 8. DFT : The Discrete Fourier Transform

The Matrix Exponential

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

CORRECTIONS TO THE WU-SPRUNG POTENTIAL FOR THE RIEMANN ZEROS AND A NEW HAMILTONIAN WHOSE ENERGIES ARE THE PRIME NUMBERS

(Reference: sections in Silberberg 5 th ed.)

The Matrix Exponential

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Further Results on Pair Sum Graphs

Электронный архив УГЛТУ ЭКО-ПОТЕНЦИАЛ 2 (14),

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

ELCE5180 Digital Signal Processing

Transcription:

DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra

Copyright, S. K. Mitra DTFT Proprtis DTFT Proprtis Usig th diffrtiatio proprty of th DTFT giv i Tabl 3., w obsrv that th DTFT of is giv by xt usig th liarity proprty of th DTFT giv i Tabl 3. w arriv at x ω ω ω ω α α α ω ω d d d dx ω ω ω ω ω α α α α Y

DTFT Proprtis Exampl- Dtrmi th DTFT V of th squc v dfid by dv dv pδ pδ From Tabl 3., th DTFT of δ is Usig th tim-shiftig proprty of th DTFT giv i Tabl 3. w obsrv that ω th DTFT of δ is ad th DTFT ω ω of v is V ω 3 Copyright, S. K. Mitra

4 Copyright, S. K. Mitra DTFT Proprtis DTFT Proprtis Usig th liarity proprty of Tabl 3. w th obtai th frqucy-domai rprstatio of as Solvig th abov quatio w gt δ δ p p v d v d ω ω ω ω p p V d V d ω ω ω d d p p V

Ergy Dsity Spctrum 5 Th total rgy of a fiit-rgy squc g is giv by E g g From Parsval s rlatio giv i Tabl 3. w obsrv that π ω Eg g G dω π π Copyright, S. K. Mitra

Ergy Dsity Spctrum Th quatity S gg ω G ω is calld th rgy dsity spctrum Th ara udr this curv i th rag π ω π dividd by π is th rgy of th squc 6 Copyright, S. K. Mitra

Ergy Dsity Spctrum 7 Exampl- Comput th rgy of th squc si ω h c LP π, < < Hr π ω hlp H LP dω π π whr H ω LP,, ω c ω ω < c ω π Copyright, S. K. Mitra

Ergy Dsity Spctrum Thrfor h LP π ω c dω ω c ω π c < Hc, h LP is a fiit-rgy squc 8 Copyright, S. K. Mitra

DTFT Computatio Usig MATLAB 9 Th fuctio frqz ca b usd to comput th valus of th DTFT of a squc, dscribd as a ratioal fuctio i i th form of ω ωm ω p p... pm X ω ω d d... d at a prscribd st of discrt frqucy poits ω ω l Copyright, S. K. Mitra

DTFT Computatio Usig MATLAB For xampl, th statmt H frqzum,d,w rturs th frqucy rspos valus as a vctor H of a DTFT dfid i trms of th vctors um ad d cotaiig th cofficits { p i } ad { d i }, rspctivly at a prscribd st of frqucis btw ad π giv by th vctor w Copyright, S. K. Mitra

DTFT Computatio Usig MATLAB Thr ar svral othr forms of th fuctio frqz Th Program 3_ i th txt ca b usd to comput th valus of th DTFT of a ral squc It computs th ral ad imagiary parts, ad th magitud ad phas of th DTFT Copyright, S. K. Mitra

DTFT Computatio Usig MATLAB Exampl- Plots of th ral ad imagiary parts, ad th magitud ad phas of th DTFT ω ω.8.33.5 X ω.33.37.6 3ω ω 3ω.8.7.4 4ω ω 4ω ar show o th xt slid Copyright, S. K. Mitra

DTFT Computatio Usig MATLAB Ral part Ral part.5.5 Amplitud Amplitud -.5 -.5 -..4.6.8 ω/π -..4.6.8 ω/π Magitud Spctrum 4 Phas Spctrum.8 Magitud.6.4 Phas, radias. - 3..4.6.8 ω/π -4..4.6.8 Copyright ω/π, S. K. Mitra

DTFT Computatio Usig MATLAB ot: Th phas spctrum displays a discotiuity of π at ω.7 This discotiuity ca b rmovd usig th fuctio uwrap as idicatd blow Phas, radias - - -3-4 -5-6 Uwrappd Phas Spctrum 4-7..4.6.8 ω/π Copyright, S. K. Mitra

Liar Covolutio Usig DTFT 5 A importat proprty of th DTFT is giv by th covolutio thorm i Tabl 3. It stats that if y x * h, th th ω DTFT Y of y is giv by ω Y X H A implicatio of this rsult is that th liar covolutio y of th squcs x ad h ca b prformd as follows: ω ω Copyright, S. K. Mitra

Liar Covolutio Usig DTFT Comput th DTFTs X ad H of th squcs x ad h, rspctivly Form th DTFT ω ω ω Y X H ω 3 Comput th IDFT y of Y ω ω x h DTFT DTFT X H ω ω Y ω IDTFT y 6 Copyright, S. K. Mitra

Discrt Fourir Trasform 7 Dfiitio - Th simplst rlatio btw a lgth- squc x, dfid for ω, ad its DTFT X is ω obtaid by uiformly samplig X o th ω-axis btw ω π at ω π/, From th dfiitio of th DTFT w thus hav X X ω ω π/ x π/ Copyright, S. K. Mitra,

Discrt Fourir Trasform 8 ot: X is also a lgth- squc i th frqucy domai Th squc X is calld th discrt Fourir trasform DFT of th squc x π / Usig th otatio W th DFT is usually xprssd as: X x W, Copyright, S. K. Mitra

Discrt Fourir Trasform Th ivrs discrt Fourir trasform IDFT is giv by x X W To vrify th abov xprssio w multiply both sids of th abov quatio by W l ad sum th rsult from to, 9 Copyright, S. K. Mitra

Copyright, S. K. Mitra Discrt Fourir Trasform Discrt Fourir Trasform rsultig i W W X W x l l W X l W X l

Discrt Fourir Trasform Maig us of th idtity l W, for l r,, othrwis w obsrv that th RHS of th last quatio is qual to X l Hc l x W X l r a itgr Copyright, S. K. Mitra

Discrt Fourir Trasform Exampl - Cosidr th lgth- squc x,, Its -poit DFT is giv by X x W x W Copyright, S. K. Mitra

Discrt Fourir Trasform 3 Exampl - Cosidr th lgth- squc y,, Its -poit DFT is giv by m, m m m Y y W y m W W m Copyright, S. K. Mitra

Discrt Fourir Trasform 4 Exampl- Cosidr th lgth- squc dfid for g cosπr/, r Usig a trigoomtric idtity w ca writ πr / πr / g r r W W Copyright, S. K. Mitra

5 Copyright, S. K. Mitra Discrt Fourir Trasform Discrt Fourir Trasform Th -poit DFT of g is thus giv by W g G, r r W W

Discrt Fourir Trasform 6 Maig us of th idtity l, for l r, r a itgr W, othrwis w gt /, for r G /, for r, othrwis Copyright, S. K. Mitra

Matrix Rlatios 7 Th DFT sampls dfid by X x W ca b xprssd i matrix form as X whr X x D x,... X X X T... x x x T Copyright, S. K. Mitra

8 Copyright, S. K. Mitra Matrix Rlatios Matrix Rlatios ad is th DFT matrix giv by D 4 W W W W W W W W W L M O M M M L L L D

Matrix Rlatios Liwis, th IDFT rlatio giv by x X W ca b xprssd i matrix form as x D X whr D is th IDFT matrix, 9 Copyright, S. K. Mitra

3 Copyright, S. K. Mitra Matrix Rlatios Matrix Rlatios whr ot: 4 W W W W W W W W W L M O M M M L L L D D* D

DFT Computatio Usig MATLAB 3 Th fuctios to comput th DFT ad th IDFT ar fft ad ifft Ths fuctios ma us of FFT algorithms which ar computatioally highly fficit compard to th dirct computatio Programs 3_ ad 3_4 illustrat th us of ths fuctios Copyright, S. K. Mitra

DFT Computatio Usig MATLAB Exampl- Program 3_4 ca b usd to comput th DFT ad th DTFT of th squc x cos6π/6, 5 as show blow Magitud 8 6 4 idicats DFT sampls 3..4.6.8 ormalizd agular frqucy Copyright, S. K. Mitra

DTFT from DFT by Itrpolatio 33 Th -poit DFT X of a lgth- squc x is simply th frqucy ω sampls of its DTFT X valuatd at uiformly spacd frqucy poits ω ω π/, Giv th -poit DFT X of a lgth- ω squc x, its DTFT X ca b uiquly dtrmid from X Copyright, S. K. Mitra

34 Copyright, S. K. Mitra DTFT from DFT by DTFT from DFT by Itrpolatio Itrpolatio Thus ω ω x X W X ω π ω / X S

DTFT from DFT by Itrpolatio 35 To dvlop a compact xprssio for th sum S, lt ωπ / r r r S r ThS r From th abov rs r r r r r S r Copyright, S. K. Mitra

DTFT from DFT by 36 Or, quivaltly, Itrpolatio S rs rs r Hc r S r ωπ si ω π si ω π ω π / ωπ/ / Copyright, S. K. Mitra

Thrfor DTFT from DFT by Itrpolatio X ω si X si ω π ω π ωπ/ / 37 Copyright, S. K. Mitra

Samplig th DTFT Cosidr a squc x with a DTFT X ω W sampl X at qually spacd poits ω π/, dvlopig th ω frqucy sampls { X } Ths frqucy sampls ca b cosidrd as a -poit DFT Y whos - poit IDFT is a lgth- squc y ω 38 Copyright, S. K. Mitra

39 Copyright, S. K. Mitra Samplig th DTFT Samplig th DTFT ow Thus A IDFT of Y yilds ω ω l l l x X / X X Y π ω π l l l l l l W x x / W Y y

Samplig th DTFT 4 i.. y l xl W W l l x l W l Maig us of th idtity r W, for r m, othrwis Copyright, S. K. Mitra

Samplig th DTFT w arriv at th dsird rlatio 4 y x m, m Thus y is obtaid from x by addig a ifiit umbr of shiftd rplicas of x, with ach rplica shiftd by a itgr multipl of samplig istats, ad obsrvig th sum oly for th itrval Copyright, S. K. Mitra

To apply Samplig th DTFT y x m, m to fiit-lgth squcs, w assum that th sampls outsid th spcifid rag ar zros Thus if x is a lgth-m squc with M, th y x for 4 Copyright, S. K. Mitra

Samplig th DTFT If M >, thr is a tim-domai aliasig of sampls of x i gratig y, ad x caot b rcovrd from y Exampl- Lt { x } { 3 4 5} 43 By samplig its DTFT X at ω π/ 4, 3 ad th applyig a 4-poit IDFT to ths sampls, w arriv at th squc y giv by ω Copyright, S. K. Mitra

Samplig th DTFT y x x 4 x 4, 3 i.. { y } { 4 6 3} {x} caot b rcovrd from {y} 44 Copyright, S. K. Mitra

umrical Computatio of th DTFT Usig th DFT 45 A practical approach to th umrical computatio of th DTFT of a fiit-lgth squc ω Lt X b th DTFT of a lgth- squc x ω W wish to valuat X at a ds grid of frqucis ω π/ M, M, whr M >> : Copyright, S. K. Mitra

46 Copyright, S. K. Mitra umrical Computatio of th umrical Computatio of th DTFT Usig th DFT DTFT Usig th DFT Dfi a w squc Th π ω ω / M x x X,, M x x π ω / M M x X

umrical Computatio of th DTFT Usig th DFT 47 ω Thus X is sstially a M-poit DFT X of th lgth-m squc x Th DFT X ca b computd vry fficitly usig th FFT algorithm if M is a itgr powr of Th fuctio frqz mploys this approach to valuat th frqucy rspos at a prscribd st of frqucis of a DTFT ω xprssd as a ratioal fuctio i Copyright, S. K. Mitra

DFT Proprtis 48 Li th DTFT, th DFT also satisfis a umbr of proprtis that ar usful i sigal procssig applicatios Som of ths proprtis ar sstially idtical to thos of th DTFT, whil som othrs ar somwhat diffrt A summary of th DFT proprtis ar giv i tabls i th followig slids Copyright, S. K. Mitra

Tabl 3.5: Gral Proprtis of DFT 49 Copyright, S. K. Mitra

Tabl 3.6: DFT Proprtis: Symmtry Rlatios 5 x is a complx squc Copyright, S. K. Mitra

Tabl 3.7: DFT Proprtis: Symmtry Rlatios 5 x is a ral squc Copyright, S. K. Mitra

Circular Shift of a Squc This proprty is aalogous to th timshiftig proprty of th DTFT as giv i Tabl 3., but with a subtl diffrc Cosidr lgth- squcs dfid for Sampl valus of such squcs ar qual to zro for valus of < ad 5 Copyright, S. K. Mitra

Circular Shift of a Squc If x is such a squc, th for ay arbitrary itgr o, th shiftd squc x x o is o logr dfid for th rag W thus d to dfi aothr typ of a shift that will always p th shiftd squc i th rag 53 Copyright, S. K. Mitra

Circular Shift of a Squc Th dsird shift, calld th circular shift, is dfid usig a modulo opratio: x x c o For o > right circular shift, th abov quatio implis x c x, o for x o, for < o o 54 Copyright, S. K. Mitra

Circular Shift of a Squc Illustratio of th cocpt of a circular shift x x 6 x 4 6 55 x 5 x 6 6 Copyright, S. K. Mitra

Circular Shift of a Squc As ca b s from th prvious figur, a right circular shift by o is quivalt to a lft circular shift by o sampl priods A circular shift by a itgr umbr o gratr tha is quivalt to a circular shift by o 56 Copyright, S. K. Mitra

Circular Covolutio 57 This opratio is aalogous to liar covolutio, but with a subtl diffrc Cosidr two lgth- squcs, g ad h, rspctivly Thir liar covolutio rsults i a lgth- squc y L giv by y L g m h m, m Copyright, S. K. Mitra

Circular Covolutio 58 I computig y L w hav assumd that both lgth- squcs hav b zropaddd to xtd thir lgths to Th logr form of y L rsults from th tim-rvrsal of th squc h ad its liar shift to th right Th first ozro valu of y L is y L g h, ad th last ozro valu is g h y L Copyright, S. K. Mitra

Circular Covolutio 59 To dvlop a covolutio-li opratio rsultig i a lgth- squc y C, w d to dfi a circular tim-rvrsal, ad th apply a circular tim-shift Rsultig opratio, calld a circular covolutio, is dfid by y C m g m h m, Copyright, S. K. Mitra

Circular Covolutio Sic th opratio dfid ivolvs two lgth- squcs, it is oft rfrrd to as a -poit circular covolutio, dotd as y g h Th circular covolutio is commutativ, i.. g h h g 6 Copyright, S. K. Mitra

Circular Covolutio 6 Exampl - Dtrmi th 4-poit circular covolutio of th two lgth-4 squcs: { g } { }, as stchd blow g 3 { h } { } h 3 Copyright, S. K. Mitra

6 Circular Covolutio Th rsult is a lgth-4 squc giv by C g y 4 h From th abov w obsrv y C 3 3 y C g m h m 4, m g m h m 4 m 3 g h g h3 g h g3 h 6 Copyright, S. K. Mitra

63 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio Liwis 3 4 m C m h m g y 3 3 h g h g h g h g 7 3 4 m C m h m g y 3 3 h g h g h g h g 6

64 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio ad Th circular covolutio ca also b computd usig a DFT-basd approach as idicatd i Tabl 3.5 5 3 3 h g h g h g h g 3 4 3 3 m C m h m g y y C

65 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio Exampl - Cosidr th two lgth-4 squcs rpatd blow for covic: Th 4-poit DFT G of g is giv by 3 g 3 h 4 / g g G π 4 6 4 4 3 / / g g π π 3 3, / / π π

66 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio Thrfor Liwis,, G, G G 3, 4 G 4 / h h H π 4 6 4 4 3 / / h h π π 3 3, / / π π π

Circular Covolutio Hc, H 6, H, H, H 3 Th two 4-poit DFTs ca also b computd usig th matrix rlatio giv arlir 67 Copyright, S. K. Mitra

68 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio g g g g G G G G 4 3 3 4 D h h h h H H H H 6 3 3 4 D is th 4-poit DFT matrix D 4

69 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio If dots th 4-poit DFT of th from Tabl 3.5 w obsrv Thus 3 H G Y C, Y C y C 4 3 3 3 H G H G H G H G Y Y Y Y C C C C

7 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio A 4-poit IDFT of yilds Y C * 3 4 3 4 C C C C C C C C Y Y Y Y y y y y D 5 6 7 6 4 4

Circular Covolutio 7 Exampl - ow lt us xtdd th two lgth-4 squcs to lgth 7 by appdig ach with thr zro-valud sampls, i.. g, g, h, h, 4 4 3 6 3 6 Copyright, S. K. Mitra

Circular Covolutio 7 W xt dtrmi th 7-poit circular covolutio of g ad h : y 6 From th abov g m h m m, 7 y g h g h 6 6 g h 4 g 4 h 3 g 5 h g 6 h 3 g h Copyright, S. K. Mitra

73 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio Cotiuig th procss w arriv at, 6 h g h g y h g h g h g y, 5 3 3 3 h g h g h g h g y, 5 3 3 4 h g h g h g y, 4

Circular Covolutio y 5 g h 3 g 3 h, y 6 g 3 h 3 As ca b s from th abov that y is prcisly th squc y L obtaid by a liar covolutio of g ad h y L 74 Copyright, S. K. Mitra

Circular Covolutio Th -poit circular covolutio ca b writt i matrix form as yc yc M y C h h h M h h h h M h h h h M h 3 L L L O L h g h g h3 g M M h g 75 ot: Th lmts of ach diagoal of th matrix ar qual Such a matrix is calld a circulat matrix Copyright, S. K. Mitra