Vortex matter in HTS Grain Boundary Josephson Junctions: Intrinsic and Extrinsic d-wave Effects

Similar documents
arxiv:cond-mat/ v2 [cond-mat.supr-con] 15 May 2000

Interplay between static and dynamic properties of semifluxons in Y Ba 2 Cu 3 O 7 δ 0 π Josephson junctions

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

Determining the Order Parameter of Unconventional Superconductors by Josephson Interferometry

Superconducting Flux Qubits: The state of the field

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

High-Temperature Superconductors: Playgrounds for Broken Symmetries

Shapiro steps in Josephson junctions with alternating critical current density

Self-Induced Resonances in Asymmetric Superconducting Quantum Interference Devices

Josephson Interferometry:

Intrinsic Josephson π-junctions for novel devices

Scanning SQUID microscope tests of the symmetry of the high-t~ gap

Theory for investigating the dynamical Casimir effect in superconducting circuits

Gauged Cosmic Strings and Superconductor Vortices

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Supercondcting Qubits

Vortices in Classical Systems

Dynamics of Second Order Phase Transitions and Formation of Topological Defects. W. H. Zurek Los Alamos

-SQUIDs based on Josephson contacts between high-t c and low-t c superconductors

What's so unusual about high temperature superconductors? UBC 2005

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs)

Half-Integer Flux Quantization in Unconventional Superconductors

Characterization of moderately damped low Tc Josephson junctions through measurements of switching current distributions

Disordered Superconductors

Strong tunable coupling between a charge and a phase qubit

Vortex lattice pinning in high-temperature superconductors.

The Influence of the Second Harmonic in the Current-Phase Relation on the Voltage-Current Characteristic of high T C DC SQUID

Tuning a short coherence length Josephson junction through a metal-insulator transition

Modeling Schottky barrier SINIS junctions

Vortices in superconductors& low temperature STM

Cuprates supraconducteurs : où en est-on?

UNIVERSITÀ DEGLI STUDI DI GENOVA

Lecture 6. Josephson junction circuits. Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning.

Metastable states in an RF driven Josephson oscillator

Enhanced pinning in high-temperature superconducting cuprate single crystals at low DC magnetic field

Exploring parasitic Material Defects with superconducting Qubits

LECTURE 3: Refrigeration

NMR in Strongly Correlated Electron Systems

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

Testing axion physics in a Josephson junction environment

Aspects of of Intrinsic Josephson Tunneling

physics 590 ruslan prozorov magnetic measurements Nov 9,

Quantum Phase Slip Junctions

Mutual-inductance route to the paramagnetic Meissner effect in two-dimensional Josephson-junction arrays

arxiv:cond-mat/ v2 [cond-mat.supr-con] 16 Oct 2000

Alignment of chiral order parameter domains in Sr 2 RuO 4 by magnetic field cooling

Dynamical Casimir effect in superconducting circuits

p 0 Transition in Superconductor-Ferromagnet-Superconductor Junctions 1

Vortex Imaging in Unconventional Superconductors

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Superconductivity at nanoscale

Superconducting Resonators and Their Applications in Quantum Engineering

Collective Effects. Equilibrium and Nonequilibrium Physics

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Solid Surfaces, Interfaces and Thin Films

Intrinsic surface depression of the order parameter under mixed

Magnetically Induced Electronic States in 2D Superconductors

Static and dynamic properties of fluxons in a zig-zag 0 π Josephson junction

Electronic Noise Due to Thermal Stripe Switching

Electrostatic Tuning of Superconductivity. Allen M. Goldman School of Physics and Astronomy University of Minnesota

Observation of Half-Quantum Flux in Unconventional Superconductor β-bi 2 Pd

Periodic Oscillations of Josephson-Vortex Flow Resistance in Oxygen-Deficient Y 1 Ba 2 Cu 3 O x

Transport properties of sub-micron YBa 2 Cu 3 O 7-δ step-edge Josephson junctions

arxiv: v1 [cond-mat.supr-con] 7 May 2011 Edge states of Sr 2 RuO 4 detected by in-plane tunneling spectroscopy

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Weak Link Probes and Space-Time Translation Symmetry Breaking

CONDENSED MATTER: towards Absolute Zero

H c2 II (T) β"-(et) 2 SF 5 CH 2 CF 2 SO H p. =9.6 T (T c =5K) T c /u B H (T) T (mk) 200 H Plane. 56 mk

Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice

Superconducting Pinning by Magnetic Domains in a Ferromagnet-Superconductor Bilayer

Superconducting devices based on coherent operation of Josephson junction arrays above 77K

Physical mechanisms of low frequency noises in superconducting qubits

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

Superconducting properties of carbon nanotubes

Spontaneously broken time-reversal symmetry in high-temperature superconductors

arxiv: v1 [cond-mat.supr-con] 2 Jan 2008

Superconductivity - Overview

Charge fluctuators, their temperature and their response to sudden electrical fields

Collective Effects. Equilibrium and Nonequilibrium Physics

FYSZ 460 Advanced laboratory work: Superconductivity and high T C superconductor Y 1 Ba 2 Cu 3 O 6+y

Superconductor to insulator transition: a short overview on recent ideas. C.Castellani

Exotic Phenomena in Topological Insulators and Superconductors

SUPERCONDUCTOR-FERROMAGNET NANOSTRUCTURES

SUPPLEMENTARY INFORMATION

Large scale 2D SQIF arrays

Superconductivity: approaching the century jubilee

Investigation of the anisotropy of dissipation processes in single crystal of Yba2Cu3O7-d system

Spontaneous currents in ferromagnet-superconductor heterostructures

Coupling of spin and orbital motion of electrons in carbon nanotubes

b imaging by a double tip potential

Parity-Protected Josephson Qubits

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Ferromagnetic superconductors

Condensed Matter Option SUPERCONDUCTIVITY Handout

Transcription:

Vortex matter in HTS Grain Boundary Josephson Junctions: Intrinsic and Extrinsic d-wave Effects Francesco Tafuri INFM Coherentia Seconda Università di Napoli In collaboration with: J. Kirtley and C. Tsuei, IBM T.J. Watson Research Center F. Lombardi and T. Bauch, Chalmers University A. Barone, F. Miletto, D. Stornaiuolo and U. Scotti, Napoli Federico II E.Ilichev, IPHT Jena G. Balestrino, P.G. Medaglia, P. Orgiani, Roma Tor Vergata

Vortex matter d-wave OP symmetry search for spontaneous currents in HTS and HTS JJ (π-ring) Novel devices exploiting d-wave OP (π-circuitry) and possibly truly quantum effects π-junctions Flux dynamics Pearl vortices Vortex quantum tunneling Phase transition Cosmological experiments Topological defects Background and motivation d-wave OP symmetry Quantum effects HTS JJ

Half flux quantum effect inyb 2 C 3 O 7-x B= 0 mg B= 3.7 mg C. Tsuei, J. Kirtley et al. PRL ( 94) J. Kirtley, C. Tsuei et al. Nature ( 97)

π I C = I Co sin (π ϕ) I C = I Co sin ϕ 0 Josephson Effect and π-phase shift L.N. Bulaevskii, V.V. Kuzii and A.A. Sobyanin, JETP Lett. 25, 290 (1977) V.B. Geshkenbein, A.I. Larkin and A. Barone, Phys. Rev. B 36, 235 (1987) M. Sigrist and T.M. Rice, J. Phys. Soc. Jpn. 61, 4283 (1992) + Φ Φ Φ Φ Φ Φ Φ = Φ Φ ϕ π π o o c o a o o L I L U 2 cos 2 ), ( 2 2 D.Van Harlingen. Rev. Mod. Phys. 67, 515( 95)

Spontaneous nucleation of topological defects in phase transition (normal-superconductor) Amorphous Mo 3 Si superconducting thin film Optical Microscope Scanning SQUID Microscope T c = 7.81 K; 50 nm thick; 30 µm Outer Diameter, 20 µm Inner Diameter, 60 µm spacing

Spontaneous (Φ=0) nucleation of topological defects in Mo 3 Si rings Dependence on the cooling rate 2.1x10-4 K/sec 9.2x10-3 K/sec 21 K/sec

Probability of Mo 3 Si rings having a final fluxoid +1 as a function of the cooling rate Zero field cooling

Cosmological experiments in condensed matter systems Kibble-Zurek mechanism Keywords: Topological defects; Superfluids; Symmetry breaking dynamics; Vortex lines; Cosmological phase transitions Second order phase transition -equilibrium correlation length diverges; True correlation length ξ cannote be infinite -reaches maximum value ξ Correlated domains of diameter ξ Vortices where these domains meet T. Kibble, J. Phys. A 9, 1387 (1976). W. Zurek, Nature 317, 505 (1985); Physics Reports 276, 177 (1996)

Quantum computation L.B. Ioffe, V.B. Geshkenbein, M.V. Feigel'man, A.L. Fauchere, and G. Blatter. Nature 398, 679 (1999) Pre-requisites -tunnel junctions-low dissipation -doubly degenerate states -tunability of π-component -macroscopic quantum effects qubit condenses most of aspects related to unconventional order parameter symmetry and quantum effects Andreev bound states Time reversal symmetry breaking Imaginary component of OP,... Gap... A. Zagoskin, Cond. Mat. 9903170 (1999)

d-wave effects in JJ: the extreme case of 45 asymmetric configuration (θ( L =0 θ R =90 ): second harmonic and Andreev bound states - + + - D N S A1 e h A2 - + + - h e Relatively easy access to second harmonic a price to pay for instance: C.R. Hu, Phys. Rev. Lett. 72, 1626 (1994 ); T.Lowfander, V.S. Shumeiko and G. Wendin, Supercon. Sci. Technol. 14, R53 (2000); G. Blatter, V. B. Geshkenbein and L. B. IoffePhys. Rev. B 63, 174511 (2001)

d-wave effects in JJ: for instance π-loops and faceting GB facets Macroscopic GB π J. Mannhart, H.Hilgenkamp, B. Mayer, Ch. Gerber, J.R. Kirtley, K.A. Moler and M. Sigrist,Phys. Rev. Lett. 77, 2782 (1996);

Grain boundary techniques H.Hilgenkamp and J. Mannhart, Rev. Mod. Phys. (2002)

BP MgO vs BP CeO 2 : 0 vs π tilt twist c c b a a (001) YBCO c tilt + tilt b (001) YBCO twist - tilt AGB twist + tilt (110) MgO c (103) YBCO c (103) YBCO F. Tafuri, F. Carillo, F. Lombardi,F. Miletto Granozio, F. Ricci, U. Scotti di Uccio, A. Barone, G. Testa, E. Sarnelli and J.R. Kirtley, Phys. Rev. B 62, 14431 (2000).

TEM: clean basal plane GB (45 tilt)

I(mA) Anisotropy MgO vs CeO 2 in the extreme cases of tilt and twist 2 1 0-1 -2 Twist Tilt (Ix10) -3.0-1.5 0.0 1.5 3.0 Tilt-tilt V(mV) I (µa) 300 200 100 0-100 -200 twist α=90 tilt α=0-300 -2-1 0 1 2 (001) V (mv) (103) θ Twist-tilt

Transport properties in presence of H 100 T= 4.2 K 2.0x10-6 BP twist 20 µm; T = 800 mk 1.5x10-6 I (µa) 50 0-50 I C (A) 1.0x10-6 5.0x10-7 0.0-5.0x10-7 -1.0x10-6 -100 0 H (G) 4.5-1 0 1 V (mv) -1.5x10-6 -2.0x10-6 critical current retrapping current -30-20 -10 0 10 20 30 B (µt)

Anisotropy in CeO 2 :Jc vs θ... intrinsic d-wave effects in all HTS single junctions J C vs θ Tilt-tilt θ Twist-tilt (001) YBCO (001) YBCO film (100)/(010) Y (010)/(100) Y J C (A/cm 2 ) 5x10 2 3x10 2 2x10 2 T = 4.2 K Bp CeO 2 Bp MgO 10 5 10 4 10 3 (103) YBCO (103) YBCO film c) 0 10 2 0.0 0 π/4 π/2 1.6 Angle (rad)

Intrinsic d-wave effects: angular dependence of J C 1.0 MAX I C / I C 0.8 0.6 0.4 180 150 210 120 90 60 30 330 0 0.2 0.0 BP 10µm BP 4µm d-wave S-R modified d-wave 0 20 40 60 80 θ (degrees) 240 270 300 B C D A

YES Spontaneous currents NO

Biepitaxial vs other GBs Modelling: : long junction Our data J. Kirtley, K. Moler and D. Scalapino, PRB (1997) H.Hilgenkamp and J. Mannhart, Rev. Mod. Phys. (2002) F. Tafuri,, J. Kirtley, F. Lombardi and F. Miletto Phys. Rev. B (2003)

Families of vortices in a biepitaxial sample including closed geometry θ

a b θ twist-tilt Half flux quantum Effect: manipulation along BP GBs JJ c d

Paramagnetic signal (RF) along a GB line and absence of spontaneous currents (SSM) C T T (K) 40 30 20 10 4.2 600 µm x 400 µm 600 µm x 400 µm (001) (103) (103) Finite H Phase angle α between drive current I rf and tank voltage L eff effective inductance R eff effective resistance if R eff does not depend on H dc (001) Q quality factor k coupling tank coil sample χ m ac magnetci susceptibitity 200 µm x 200 µm H = 0 (103)

Paramagnetic signal (RF) and absence of spontaneous currents (SSM) : possible hint for Andreev bound states in biepitaxial JJ??!! GB facets Macroscopic GB π - + D N S + - A1 e h A2 Presence of a mechanism able to split the midgap states, to populate the midgaps states unequally ± k y - + + - h e Higashitani, J. Phys. Soc. Jap. 66, 2556 ( 97); C.R. Hu, Phys. Rev. Lett. 72, 1626 (1994 ); T.Lowfander, V.S. Shumeiko and G. Wendin, Supercon. Sci. Technol. 14, R53 (2000) ANDREEV BOUND STATES

Flavour of d-wave induced effects 1.0 I C / I C MAX 0.8 0.6 0.4 0.2 0.0 0 20 40 60 80 θ (degrees) BP 4µm BP 10µm d-wave S-R modified d-wave junctions with intrinsic Half flux quantum effect d-wave induced effects without necessarily extrinsic effects (additional noise) Andreev bound states intrinsic Intrinsic and extrinsic extrinsic Jc

2 1.6 1.2 0.8 Hysteretic behavior-switching currents Bp twist 90 0 w=20 µm T = 4.2 K critical current retrapping current I (µa) I C (µa) 1 0-1 -2 0.4 0.0-0.4-0.8-1.2-30 -20-10 0 10 20 30 B (µt) -150-100 -50 0 50 100 150 V (µv) J C (A/cm 2 ) 5x10 2 10 5 Bp CeO 2 Bp MgO 3x10 2 10 4 2x10 2 T = 4.2 K 0 10 2 0.0 0 π/4 π/2 1.6 T T = = 4.2 K Angle (rad) 10 3 F. Lombardi, T. Bauch et al. Unpublished (2003)

Doubly degenerate states and π loops L.B. Ioffe, V.B. Geshkenbein, M.V. Feigel'man, A.L. Fauchere, and G. Blatter. Nature 398, 679 (1999); G. Blatter, V. B. Geshkenbein and L. B. IoffePhys. Rev. B 63, 174511 (2001) 2 1 I (µa) 0-1 twist, T = 25 mk -2-3.0-2.0-1.0 0.0 1.0 2.0 3.0 V (mv) I C / I C MAX 1.0 0.8 0.6 0.4 0.2 0.0 0 20 40 60 80 θ (degrees) BP 4µm BP 10µm d-wave S-R modified d-wave A B C D

An example of novel approaches to HTS junctions 150 nm GB 8 nm GB

5 CR 2 IL 5 CR Ba Ca CuO 2 Planes 6.4 Å 2 CR 2 CR #1151 1 cell 5x2x5 Λ 17.6 Å #1179 20 cells 4x2 Λ 6.4 Å 8.8 Å #1106 28 cells 2x2 F. Tafuri, J. Kirtley, P.G. Medaglia, P.Orgiani and G. Balestrino, submitted (2003)

Evidence of vortex broadening for decreasing d Pearl length Λ = 2 λ 2 L / d

Hints for Josephson-like behavior 200 µm x 200µm 0-24 asymmetric 12-12 symmetric GB I (ma) 2.0 1.5 1.0 0.5 0.0-0.5-1.0-1.5-2.0 1mm wide 5mm wide 5mm wide with H -0.4-0.2 0.0 0.2 0.4 V(mV) T = 4.2 K

Vortex matter HTS JJ d-wave OPS Quantum effects 2 I C / I C MAX 1.0 0.8 0.6 0.4 0.2 0.0 0 20 40 60 80 θ (degrees) BP 4µm BP 10µm d-wave S-R modified d-wave π-junctions Intrinsic d-wave d effects I (µa) 1 0-1 twist, T = 25 mk -2-3.0-2.0-1.0 0.0 1.0 2.0 3.0 V (mv) Pre-requisites requisites -tunnel junctions...low dissipation -doubly degenerate states -tunability of π-component -macroscopic quantum effects Novel devices exploiting d-wave d OP (π-circuitry)( and possibly truly quantum effects