Array Experiment. Results from the Telescope. Charlie Jui. University of Utah TeVPA 2013 Irvine, CA Aug. 27, 2013

Similar documents
Results from the Telescope Array Experiment

Recent Results of the Telescope Array Experiment. Gordon Thomson University of Utah

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

P. Tinyakov 1,2 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector.

Measurement of air shower maxima and p-air cross section with the Telescope Array

PoS(ICRC2015)657. Telescope Array extension: TA 4

The Pierre Auger Observatory Status - First Results - Plans

Studies of the Highest Energy Cosmic Rays with the Telescope Array Observatory. John Belz University of Utah PACIFIC September, 2014

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

PoS(ICRC2017)548. Telescope Array anisotropy summary

PoS(ICRC2015)326. TA anisotropy summary

UHE Cosmic Rays in the Auger Era

The High Resolution Fly s Eye (HiRes) Experiment. John N. Matthews University of Utah

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Status and results from the Pierre Auger Observatory

OVERVIEW OF THE RESULTS

EVIDENCE OF INTERMEDIATE-SCALE ENERGY SPECTRUM ANISOTROPY IN THE NORTHERN HEMISPHERE FROM TELESCOPE ARRAY

Ultra- high energy cosmic rays

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE

PoS(ICRC2015)349. TA Spectrum Summary

Energy Spectrum of Ultra-High-Energy Cosmic Rays Measured by The Telescope Array

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory

Ultrahigh Energy cosmic rays II

Search for EeV Protons of Galactic Origin

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

Recent measurements of ultra-high energy cosmic rays and their impact on hadronic interaction modeling

Search for clustering of ultra high energy cosmic rays from the Pierre Auger Observatory

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

Results from the Pierre Auger Observatory

Highlights from the Telescope Array Experiment

Mass Composition Study at the Pierre Auger Observatory

Anisotropy studies with the Pierre Auger Observatory

Ultra High Energy Cosmic Rays: Observations and Analysis

First Results from the Pierre Auger Project

Search for UHE photons and neutrinos using Telescope Array surface detector

Recent results on UHECRs from the Pierre Auger Observatory. Olivier Deligny (IPN Orsay), on behalf the Pierre Auger Collaboration

THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS

Is the search for the origin of the Highest Energy Cosmic Rays over? Alan Watson University of Leeds, England

The Pierre Auger Observatory in 2007

NEW VIEWS OF THE UNIVERSE. Recent Studies of Ultra High Energy Cosmic Rays. Alan Watson University of Leeds, UK (regular KICP Visitor)

Recent results from the Pierre Auger Observatory

ULTRA-HIGH ENERGY COSMIC RAYS

Experimental High-Energy Astroparticle Physics

The Pierre Auger Project: Status and Recent Results. Pierre Auger Project. Astrophysical motivation

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Some Thoughts on Laboratory Astrophysics for UHE Cosmic Rays. Pierre Sokolsky University of Utah SABRE Workshop SLAC, March, 2006

The Pierre Auger Observatory

Highlights from the Telescope Array Experiment

UHECRs sources and the Auger data

Latest results and perspectives of the KASCADE-Grande EAS facility

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

arxiv: v1 [astro-ph.he] 10 Nov 2011

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i

arxiv: v1 [astro-ph.he] 15 Oct 2018

AugerPrime. Primary cosmic ray identification for the next 10 years. Radomír Šmída.

EeV Neutrinos in UHECR Surface Detector Arrays:

Auger FD: Detector Response to Simulated Showers and Real Event Topologies

Cosmic particles with energies above ev: a brief review of results

Search for ultra-high energy photons and neutrinos at the Pierre Auger Observatory

Ultra High Energy Cosmic Rays. Malina Kirn March 1, 2007 Experimental Gravitation & Astrophysics

Full author list:

Hadronic interactions of ultra-high energy cosmic rays

7 th International Workshop on New Worlds in Astroparticle Physics São Tomé, September 2009 THE AMIGA PROJECT

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs

Air Shower Measurements from PeV to EeV

arxiv:astro-ph/ v1 28 Oct 2004

The Highest Energy Cosmic Rays

Studies on UHECR composition and hadronic interactions by the Pierre Auger Observatory

Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons

arxiv: v1 [astro-ph.he] 25 Mar 2015

Arrival directions of the highest-energy cosmic rays detected by the Pierre Auger Observatory

An Auger Observatory View of Centaurus A

The Pierre Auger Observatory: on the arrival directions of the most energetic cosmic rays

STUDY ON MASS COMPOSITION OF EXTENSIVE AIR SHOWER WITH ULTRA HIGH ENERGY COSMIC RAYS USING Q PARAMETER AND THEIR MUON COMPONENT

ULTRA HIGH ENERGY COSMIC RAYS

Development of a prototype for Fluorescence detector Array of Single-pixel Telescopes (FAST)

The Cosmic Ray Air Fluorescence Fresnel lens Telescope (CRAFFT) for the next generation UHECR observatory

Cosmic Rays: high/low energy connections

Correlation between the UHECRs measured by the Pierre Auger Observatory and Telescope Array and neutrino candidate events from IceCube

The air-shower experiment KASCADE-Grande

The cosmic ray energy spectrum measured using the Pierre Auger Observatory

HiRes Composition. John Belz, University of Utah Nuclear Interactions Workshop University of Washington 20 February 2008

Cosmic Rays in large air-shower detectors

The Pierre Auger Observatory

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

Vasily Prosin (Skobeltsyn Institute of Nuclear Physics MSU, MOSCOW) From TAIGA Collaboration

arxiv: v1 [astro-ph.he] 24 Mar 2015

8. The Review of Particle Physics, K. Nakamura et al. (Particle Data Group), Phys. G 37, (2010).

PoS(ICRC2017)522. Testing the agreement between the X max distributions measured by the Pierre Auger and Telescope Array Observatories

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

On the Combined Analysis of Muon Shower Size and Depth of Shower Maximum

The High Resolution Fly s Eye Status and Preliminary Results on Cosmic Ray Composition Above ev

Multi-Messenger Astonomy with Cen A?

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment

Recent Results of the Observatory Pierre Auger. João R. T. de Mello Neto Instituto de Física Universidade Federal do Rio de Janeiro

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1

Detecting High Energy Cosmic Rays with LOFAR

Transcription:

Results from the Telescope Array Experiment Charlie Jui University of Utah TeVPA 2013 Irvine, CA Aug. 27, 2013 http://www.physics.utah.edu/~jui/ta-tevpa2013.pdf TA, TeVPA2013 1

Telescope Array Collaboration T. Abu-Zayyada, M. Allena, R. Andersona, R. Azumab, E. Barcikowskia, J. W. Belza, D. R. Bergmana, S. A. Blakea, R. Cadya, M. J. Chaec, B. G. Cheond, J. Chibae, M. Chikawaf, W. R. Chog, T. Fujiih, M. Fukushimah,i, K. Gotoj, W. Hanlona, Y. Hayashij, N. Hayashidak, K. Hibinok, K. Hondal, D. Ikedah, N. Inouem, T. Ishiil, R. Ishimorib, H. Iton, D. Ivanova,o, C. C. H. Juia, K. Kadotap, F. Kakimotob, O. Kalashevq, K. Kasaharar, H. Kawais, S. Kawakamij, S. Kawanam, K. Kawatah, E. Kidoh, H. B. Kimd, J. H. Kima, J. H. Kimd, S. Kitamurab, Y. Kitamurab, V. Kuzminq, Y. J. Kwong, J. Lana, J.P. Lundquista, K. Machidal, K. Martensi, T. Matsudat, T. Matsuyamaj, J. N. Matthewsa, M. Minaminoj, K. Mukail, I. Myersa, K. Nagasawam, S. Nagatakin, T. Nakamurau, H. Nanpeij, T. Nonakah, A. Nozatof, S. Ogioj, S. Ohc, M. Ohnishih, H. Ohokah, K. Okih, T. Okudav, M. Onon, A. Oshimaj, S. Ozawar, I. H. Parkw, M. S. Pshirkovx, D. C. Rodrigueza, G. Rubtsovq, D. Ryuy, H. Sagawah, N. Sakuraij, A. L. Sampsona, L. M. Scotto, P. D. Shaha, F. Shibatal, T. Shibatah, H. Shimodairah, B. K. Shind, T. Shirahamam, J. D. Smitha, P. Sokolskya, R. W. Springera, B. T. Stokesa, S. R. Strattona,o, T. A. Stromana, M. Takamurae, A. Taketaz, M. Takitah, Y. Tamedak, H. Tanakaj, K. Tanakaaa, M. Tanakat, S. B. Thomasa, G. B. Thomsona, P. Tinyakovq,x, I. Tkachevq, H. Tokunob, T. Tomidaab, S. Troitskyq, Y. Tsunesadab, K. Tsutsumib, Y. Uchihoriac, F. Urbanx, G. Vasiloffa, Y. Wadam, T. Wonga, H. Yamaokat, K. Yamazakij, J. Yangc, K. Yashiroe, Y. Yonedaj, S. Yoshidas, H. Yoshiiad, R. Zollingera, Z. Zundela auniversity of Utah, btokyo Institute of Technology, cewha Womans University, dhanyang University, etokyo University of Science, fkinki University, gyonsei University, hinstitute for Cosmic Ray Research, Univ. of Tokyo, ikavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, josaka City University, kkanagawa University, luniv. of Yamanashi, msaitama University, nastrophysical Big Bang Laboratory, RIKEN, orutgers University, ptokyo City University, qinstitute for Nuclear Research of the Russian Academy of Sciences, rwaseda University, schiba University, tinstitute of Particle and Nuclear Studies, KEK, ukochi University, vritsumeikan University, wsungkyunkwan University, xuniversite Libre de Bruxelles, ychungnam National University, zearthquake Research Institute, University of Tokyo, aahiroshima City University, abadvanced Science Institute, RIKEN, acnational Institute of Radiological Science, adehime University 6 TA, TeVPA2013 2

Telescope Array Collaboration T. Abu-Zayyada, M. Allena, R. Andersona, R. Azumab, E. Barcikowskia, J. W. Belza, D. R. Bergmana, S. A. Blakea, R. Cadya, M. J. Chaec, B. G. Cheond, J. Chibae, M. Chikawaf, W. R. Chog, T. Fujiih, M. Fukushimah,i, K. Gotoj, W. Hanlona, Y. Hayashij, N. Hayashidak, K. Hibinok, K. Hondal, D. Ikedah, N. Inouem, T. Ishiil, R. Ishimorib, H. Iton, D. Ivanova,o, C. C. H. Juia, K. Kadotap, F. Kakimotob, O. Kalashevq, K. Kasaharar, H. Kawais, S. Kawakamij, S. Kawanam, ~120 K. Kawatah, collaborators E. Kidoh, H. B. Kimd, in J. H. 5 Kima, countries J. H. Kimd, S. Kitamurab, Y. Kitamurab, V. Kuzminq, Y. J. Kwong, J. Lana, J.P. Lundquista, K. Machidal, K. Martensi, T. Matsudat, T. Matsuyamaj, J. N. Matthewsa, M. Minaminoj, Japan, K. Mukail, USA, I. Korea, Myersa, K. Nagasawam, Russia, S. Belgium Nagatakin, T. Nakamurau, H. Nanpeij, T. Nonakah, A. Nozatof, S. Ogioj, S. Ohc, M. Ohnishih, H. Ohokah, K. Okih, T. Okudav, M. Onon, A. Oshimaj, S. Ozawar, I. H. Parkw, M. S. Pshirkovx, D. C. Rodrigueza, G. Rubtsovq, D. Ryuy, H. Sagawah, N. Sakuraij, A. L. Sampsona, L. M. Scotto, P. D. Shaha, F. Shibatal, T. Shibatah, H. Shimodairah, B. K. Shind, T. Shirahamam, J. D. Smitha, P. Sokolskya, R. W. Springera, B. T. Stokesa, S. R. Strattona,o, T. A. Stromana, M. Takamurae, A. Taketaz, M. Takitah, Y. Tamedak, H. Tanakaj, K. Tanakaaa, M. Tanakat, S. B. Thomasa, G. B. Thomsona, P. Tinyakovq,x, I. Tkachevq, H. Tokunob, T. Tomidaab, S. Troitskyq, Y. Tsunesadab, K. Tsutsumib, Y. Uchihoriac, F. Urbanx, G. Vasiloffa, Y. Wadam, T. Wonga, H. Yamaokat, K. Yamazakij, J. Yangc, K. Yashiroe, Y. Yonedaj, S. Yoshidas, H. Yoshiiad, R. Zollingera, Z. Zundela auniversity of Utah, btokyo Institute of Technology, cewha Womans University, dhanyang University, etokyo University of Science, fkinki University, gyonsei University, hinstitute for Cosmic Ray Research, Univ. of Tokyo, ikavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, josaka City University, kkanagawa University, luniv. of Yamanashi, msaitama University, nastrophysical Big Bang Laboratory, RIKEN, orutgers University, ptokyo City University, qinstitute for Nuclear Research of the Russian Academy of Sciences, rwaseda University, schiba University, tinstitute of Particle and Nuclear Studies, KEK, ukochi University, vritsumeikan University, wsungkyunkwan University, xuniversite Libre de Bruxelles, ychungnam National University, zearthquake Research Institute, University of Tokyo, aahiroshima City University, abadvanced Science Institute, RIKEN, acnational Institute of Radiological Science, adehime University 6 TA, TeVPA2013 3

TA, TeVPA2013 4 Telescope Array Experiment TA is a ultrahigh energy (>10 17 ev) cosmic ray observatory located in the West Desert of Utah: largest in the northern hemisphere

TARA (TA Radar) TARA Presentations at TeVPA2013: Tue. Aug 27 14:24 Jordan HANSON 14:48: Samridha KUNWAR An R&D project to observe radar reflections form cosmic ray air showers TARA1.5 April 2011 to July 2012 54.1 MHz @ 1.5 kw TARA40 Summer 2013~ 54.1 MHz @ 40 kw 41 TA, TeVPA2013 5

Outline 1. Introduction to Telescope Array 2. Data Analysis Techniques 3. Energy Spectrum 4. Composition 5. Photons and Neutrinos??? 6. Anisotropy TA, TeVPA2013 6

1. Introduction TA Detectors TA is a hybrid experiment 507 scintillation counters surface detector (SD) Covers 730 km 2. 3 fluorescence detector (FD) stations Located at the corners of the SD array Black Rock FD Middle Drum FD Long Ridge FD TA, TeVPA2013 7

Scintillation Counters Pre-assembled in Japan, Final Assby/testing in Delta: 2 layers, 1.25 cm scintillator, 3m 2 area TA, TeVPA2013 8

TA, TeVPA2013 9 Scintillator Detectors on a 1.2 km square grid Power: Solar/Battery Readout: Radio Self-calibrated: µ background Operational: 3/2008

Refurbished from HiRes-I TA Fluorescence Detectors Middle Drum 14 telescopes@station 256 PMTs/camera Observations since ~10/2007 5.2 m 2 New FDs Observation since ~11/2007 Long Ridge Observation since ~6/2007 Black Rock Mesa 12 telescopes/station 256 PMTs/camera Hamamatsu R9508 FOV~15x18deg 6.8 m ~1 m 2 2 TA, TeVPA2013 10

TA, TeVPA2013 11 Example Event from 2008-10-26 MD MD mono BR mono θ [ o ] φ [ o ] x[km] y[km] 51.43 73.76 7.83-3.10 51.50 77.09 7.67-4.14 Stereo BR&LR 50.21 71.30 8.55-4.88 LR SD BR

TA, TeVPA2013 12 2. Data Analysis FD Geometrical Reconstruction The trajectory of the EAS can be determined in one of two ways: 1. Monocular reconstruction using the arrival time of light signal at the detector. 2. By intersecting the shower-detector planes (SDP) seen from the two detector sites. 2. 1. RP θi ti = t0 + tan c 2

Measurement of a fluorescence Event Event Display Black Rock Mesa Fluorescence Direct (Cerenkov) Rayleigh scatt. Aerosol scatt. Monocular timing fit Reconstructed Shower Profile TA, TeVPA2013 13

Hybrid Reconstruction Primary Cosmic Ray UV Fluorescence Photons Isotropic Emission FD mono has ~5 ang. resolution Adding SD ~0.5 resolution. Charged Particles Electromagnetic Shower ( Stereo FD resolution ~0.5 ) RED: Surface Detector Virtual PMT 3. Hybrid reconstruction: Incorporating timing information of SD into FD geometry fit BLACK: Fluorescence Telescope PMT TA, TeVPA2013 14

2008/Jun/25-19:45:52.588670 UTC Analyzing SD Event Geometry Fit (modified Linsley) Fit with AGASA LDF Lateral Density Distribution Fit r = 800m S(800): Primary Energy Zenith attenuation by MC TA, TeVPA2013 15

Surface Array Energy Measurement Energy table is constructed using the MC (CORSIKA) Determination of event energy by interpolating between S800 vs. sec(θ) lines Uses novel dethinning of CORSIKA (paper draft in internal review) TA, TeVPA2013 16

TA, TeVPA2013 17 3. Energy Spectrum of UHECR The TA Collaboration was in part a merger of the High Resolution Fly s Eye (HiRes) and the Akeno Giant Air Shower Array (AGASA) AGASA flux systematically ~50% higher than HiRes AGASA: continuing spectrum seen Differential flux multiplied by E 3 To highlight the subtle features in a steeply falling spectrum HiRes: GZK suppression At 5σ significance

TA, TeVPA2013 18 Energy Scale Check and resolution FD energy EFD Hybrid events E > 1019 ev Angular resolution = 1.4o SD energy ESD (scaled to FD energy) EESSSS = EE SSSS/1.27 E > 1019 ev Energy resolution < 20%

5 year TA SD spectrum July, 2013 TA data May, 2008 May, 2013 Zenith angle < 45o 14787 ev. (E > 1018.2 ev) Exposure 4500 km2 sr yr Broken power law fit 4-year TA surface detector spectrum TA, TeVPA2013 Astrophysical Journal Letters 768 L1 (2013) 19

Spectrum Summary Doug Bergman for the TA Colaboration: ICRC 2013 http://143.107.180. 38/indico/getFile.py /access?contribid=2 21&sessionId=3&res Id=0&materialId=sli des&confid=0 TA Hybrid Spectrum papers TA Monocular FD spectrum papers arxiv:1305.7273 [astro-ph.he], Astroparticle Physics 39 40 (2012) 109 119 TA, TeVPA2013 submitted to Astroparticle Physics Astroparticle Physics 48 (2013) 16 24 20

TA, TeVPA2013 21 Significance and energy of suppression TA SD 5-year Locations of the ankle/dip and of the suppression are consistent with interaction of protons with the CMBR

TA, TeVPA2013 22 4. Composition AUGER: Phys.Rev.Lett.104:091101,2010 Suggests shift to heavier composition at higher energies: Hybrid HiRes: Phys.Rev.Lett.104:161101,2010 (with Xmax data suppl.) consistent with predominately light (protons) composition Stereo

TA Stereo Composition Camera images LR BR Longitudinal Shower Profiles Fluorescence Cherenkov TA, TeVPA2013 23

TA, TeVPA2013 24 <Xmax> vs LogE 5-year data (Nov., 2007 Nov. 2012) Y. Sunesada for the TA Collaboration ICRC2013 http://143.107.180.38/indico/getfile.py /access?contribid=132&sessionid=3&re sid=0&materialid=slides&confid=0 TA data consistent with (QGSJET-II.3) protons

TA, TeVPA2013 25 Comparing Xmax Distribution with MC p/fe expectations: Stereo TA data consistent with (QGSJET-II.3) protons

TA, TeVPA2013 26 Comparing Xmax Distribution with MC p/fe expectations: Stereo TA data consistent with (QGSJET-II.3) protons

TA, TeVPA2013 27 Comparing Xmax Distribution with MC p/fe expectations: Stereo TA data consistent with (QGSJET-II.3) protons

TA, TeVPA2013 28 Hybrid Analysis <Xmax> vs LogE 4-year data (May, 2008 May, 2012) TA data consistent with (QGSJET-II.3) protons

TA, TeVPA2013 29 Comparing Xmax Distribution with MC p/fe expectations: Hybrid TA data consistent with (QGSJET-II.3) protons

TA, TeVPA2013 30 5. Photons and Neutrino Search TA Surface Detector Photon Search small a large a G. Rubtsov for the TA Collaboration ICRC 2013 http://143.107.180.38/indico/getfile. py/access?contribid=149&sessionid=3 &resid=0&materialid=slides&confid=0 a = Linsley curvature parameter

TA, TeVPA2013 31 TA Data TA Data TA Data γ MC γ MC γ MC arxiv:1304.5614 [astro-ph.he] Submitted to Phys Rev D

TA SD Neutrino Search Surface Detector Recorded Waveforms Neutrinos primaries produce YOUNG (many peaks in waveform) but HIGHLY INCLINED showers TA, TeVPA2013 32

TA PREIMINARY ICRC 2013 NO INCLINED YOUNG showers in TA data ZERO neutrino candidates TA, TeVPA2013 33

Equatorial Coordinates TA, TeVPA2013 34 6. Anisotropy E>10 EeV 988 events E>40 EeV 57 events Search based on 3.3 year (May 2008-Sep 2011) data published: Astrophysical Journal, 757:26 (2012) zenith < 45 deg E>57 EeV 25 events Results were consistent with Isotropic Source Model

TA, TeVPA2013 35 TA Anisotrpy Update 2013 5 full years of Data: May 2008 May 2013 Zenith < 55 deg Angular resolution better than 1.5 deg. E>10 EeV: 2130 events E>40 EeV: 132 events E>57 EeV: 52 events Energy resolution ~20% Results are still largely consistent with isotropy, but

E > 57 EeV, SuperGalactic coordinates Hot Spot? P. Tinyakov for the TA Collaboration ICRC 2013 http://143.107.180.38/in dico/getfile.py/access?c ontribid=1033&sessionid =3&resId=0&materialId= slides&confid=0 K.S. p = 0.06 K.S. p = 0.003 SuperGalactic Longitude (deg) SuperGalactic Latitude (deg) TA, TeVPA2013 36

P(δ) = Probability that the observed number of pairs (at <δ) occurs by chance from an isotropic distribution Clustering (autocorrelation) 0.004 Small P(δ): Clustering at angular scale ~δ Separation angle P(δ)~0.004 at δ~20o for E > 57 EeV TA, TeVPA2013 37 29

TA, TeVPA2013 38 Comparison with Large-Scale Structure (LSS) E > 10 EeV: 2130 events E > 40 EeV: 132 events E > 57 EeV: 52 events White dots: 5-year TA data with zenith angle < 55 deg. Gray patterns: expected flux density from proton LSS 2MASS Galaxy Redshift catalog (XSCz)

Comparison with Large-Scale Structure (LSS) E > 10 EeV E > 40 EeV E > 57 EeV Theta: deflection angle Need more data! TA, TeVPA2013 39 28

Conclusions TA Energy spectrum consistent with light composition ***TA surface scintillator array consistent with GZK cut-off Preliminary <Xmax> composition result from both stereo and hybrid analyses consistent with light (proton) composition No UHE photon or neutrino TA SD data largely consistent with isotropy Small Excess seen in SG Hint of Clustering at ~20 deg Marginally incompatible with isotropy at E>57 EeV but compatible with Large Scale Structure (LSS) TA Low Energy Extension (TALE) nearly completed Plans for TAx4 expansion TA, TeVPA2013 40

Correlations with AGN 472 AGN from 2006 Veron catalog with z < 0.018 E > 57 EeV, zenith angle < 45o, N = 42 (5 yr) Separation angle = 3.1o TA, TeVPA2013 41 25

Correlations with AGN Probability to hit AGN with a single event po = 0.24 17 events correlate out of 42 p = 0.014 Astrophysical Journal, 757:26 (2012) TA, TeVPA2013 42

TA, TeVPA2013 43 TA 4 Expansion A project to expand the TA surface detector by a factor of 4 (~3000 km2) 500 more scintillation counters with 2.08 km spacing A fluorescence detector of 10 telescopes from HiRes telescopes The proposal is being prepared for submission in fall, 2013. Anisotropy studies with more significance By March, 2019 20 TA years of SD data 14 TA years of hybrid data

TA, TeVPA2013 44 38