What is the Wet Lab?

Similar documents
Decoherence and The Collapse of Quantum Mechanics. A Modern View

Quantum Entanglement. Chapter Introduction. 8.2 Entangled Two-Particle States

Quantum Mechanics: Interpretation and Philosophy

Quantum reality. Syksy Räsänen University of Helsinki, Department of Physics and Helsinki Institute of Physics

228 My God - He Plays Dice! Schrödinger s Cat. Chapter 28. This chapter on the web informationphilosopher.com/problems/scrodingerscat

about Quantum Physics Bill Poirier MVJS Mini-Conference Lawrence Hall of Science July 9, 2015

ReleQuant Improving teaching and learning in modern physics in upper secondary school Budapest 2015

Physics. Light Quanta

226 My God, He Plays Dice! Entanglement. Chapter This chapter on the web informationphilosopher.com/problems/entanglement

How does it work? QM describes the microscopic world in a way analogous to how classical mechanics (CM) describes the macroscopic world.

Cosmology Lecture 2 Mr. Kiledjian

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2

The Relativistic Quantum World

Q8 Lecture. State of Quantum Mechanics EPR Paradox Bell s Thm. Physics 201: Lecture 1, Pg 1

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu

Hacking Quantum Cryptography. Marina von Steinkirch ~ Yelp Security

Introduction to the strange world of Quantum Physics

37-6 Watching the electrons (matter waves)

T he Science of. What exactly is quantum physics? Until the end of the nineteenth century, scientists thought

Lecture 13B: Supplementary Notes on Advanced Topics. 1 Inner Products and Outer Products for Single Particle States

The Collapse of the Wave Function

Lecture 8: Wave-Particle Duality. Lecture 8, p 2

HSSP Philosophy of Quantum Mechanics 08/07/11 Lecture Notes

11/26/2018 Photons, Quasars and the Possibility of Free Will - Scientific American Blog Network. Observations

Measurement: still a problem in standard quantum theory

Quantum Measurements: some technical background

What is Quantum Mechanics?

Lecture 14, Thurs March 2: Nonlocal Games

Entering the 2009 Raab Contest Steve Brehmer

Lecture 2: Quantum Mechanics & Uncertainty. Today s song: I Know But I Don t Know- Blondie

The Mysteries of Quantum Mechanics

Week 11: April 9, The Enigma of Measurement: Detecting the Quantum World

1 Introduction. 1.1 Stuff we associate with quantum mechanics Schrödinger s Equation

Lecture 9: Introduction to QM: Review and Examples

Double slit questions

The Quantum Handshake Explored

Quantum Mechanics: Blackbody Radiation, Photoelectric Effect, Wave-Particle Duality

Superposition - World of Color and Hardness

UNIT 7 ATOMIC AND NUCLEAR PHYSICS

The Atom and Quantum Mechanics

COPENHAGEN INTERPRETATION:

The Measurement Problem of Quantum Mechanics Click to edit Master title style. Wells Wulsin SASS 24 September 2008

A Re-Evaluation of Schrodinger s Cat Paradox

Bell s Theorem 1964 Local realism is in conflict with quantum mechanics

Quantum Computers. Todd A. Brun Communication Sciences Institute USC

Coins and Counterfactuals

Quantum Entanglement and Cryptography. Deepthi Gopal, Caltech

Honors 225 Physics Study Guide/Chapter Summaries for Final Exam; Roots Chapters 15-18

Reference Texts. Principles of Quantum Mechanics R Shanker Modern Quantum Mechanics J.J. Sakurai

2 Quantum Mechanics. 2.1 The Strange Lives of Electrons

A trip to Quantum Physics

6.080/6.089 GITCS May 6-8, Lecture 22/23. α 0 + β 1. α 2 + β 2 = 1

Card Appendix Quantum Concepts

ASTRO 114 Lecture Okay. What we re going to discuss today are what we call radiation laws. We ve

Introduction. Introductory Remarks

15 Skepticism of quantum computing

Alan Mortimer PhD. Ideas of Modern Physics

(ii) The search for knowledge is a cooperative enterprise;

Intro to Quantum Physics

HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8. From Last Time

Delayed Choice Paradox

Physicists' Epistemologies of Quantum Mechanics

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS

FRAME S : u = u 0 + FRAME S. 0 : u 0 = u À

Contents. Chapter 1 Schrödinger s Cat 1. Chapter 2 Size Is Absolute 8. Chapter 3 Some Things About Waves 22. Chapter 4

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function:

Sometimes light acts like a wave Reminder: Schedule changes (see web page)

How to use the simulator

Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples. Lecture 21, p 1

Physics 116. Nov 21, Session 31 De Broglie, duality, and uncertainty. R. J. Wilkes

Modern Physics notes Paul Fendley Lecture 3

Quantum Socks and Photon Polarization Revision: July 29, 2005 Authors: Appropriate Level: Abstract:

Lecture 2 - Length Contraction

Modern Physics for Frommies V Gravitation Lecture 8

UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC. Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009

Modern Physics notes Paul Fendley Lecture 1

MITOCW watch?v=0usje5vtiks

Decoherence and the Classical Limit

Evidence and Theory in Physics. Tim Maudlin, NYU Evidence in the Natural Sciences, May 30, 2014

Einstein-Podolsky-Rosen paradox and Bell s inequalities

Thermodynamics: Entropy

ASTRO 114 Lecture Okay. We re now gonna continue discussing and conclude discussing the entire


Chapter 26: Cosmology

φ(ν)dν = 1. (1) We can define an average intensity over this profile, J =

Gedankenexperimente werden Wirklichkeit The strange features of quantum mechanics in the light of modern experiments

Quantum Optics and Quantum Information Laboratory

Quantum Mechanics I. Oscar Loaiza-Brito 1. Departamento de Física División de Ciencias e Ingeniería, Campus León, Universidad de Guanajuato

1 1D Schrödinger equation: Particle in an infinite box

Semiconductor Physics and Devices

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 10

ELEC4705 Fall Tom Smy. LECTURE 3 Fundamentals of Quantum Theory

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage

Dick's PhAQs II: Philosopher-Asked Questions

Understanding Quantum Physics An Interview with Anton Zeilinger

Bits. Chapter 1. Information can be learned through observation, experiment, or measurement.

Chemistry 271 Quantum Mechanics

General Physical Chemistry II

Introduction. Introductory Remarks

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels

Transcription:

Welcome to the Wet Lab Library Lecture Series! What is the Wet Lab? Learn more at meetup.com and www.thewetlab.org Lecture Series Schedule *La Jolla Riford Library First Tuesdays, 6pm + science happy hour First Saturdays, Wet Lab Workshops, 3pm *Downtown Central Library Third Thursdays, 6pm + science happy hour Topics of lectures to come: Bioinformatics, neurobiology, genomics & much more!

Entanglement, Decoherence, and The Collapse of Quantum Mechanics A Modern View By Eric L. Michelsen Presentation to the San Diego Wetlab, 12/17/2015. Copyright 2015 Eric L. Michelsen. All rights reserved.

Probably, most of what you ve heard about Quantum Mechanics is wrong E.g., reality is not subjective We don t get to choose our own reality But some of what you ve heard is true: Particles can have components in two (or more) places at once Each component evolves in time as if it were the whole particle (the whole mass, whole charge, whole spin) We ll come back to this soon Even most physicists get it wrong We need to update our physics education More and more physicists are coming out to set the record straight on QM Beware of the Internet Especially on technical subjects like physics The most reliable sites are professors 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 3

Who am I? Background PhD Physics UCSD, June 2010 Research: Lunar Laser Ranging Study of gravity, aka General Relativity My book on quantum mechanics was published in February, 2014, by Springer Quirky Quantum Concepts It s on Amazon! It s a technical book for serious scientists & engineers Software Engineering BSEE: electrical engineer for a few decades Integrated Circuits: circuit & device design Digital Signal Processing Interests: Human Rights Medical physics Quantum Field Theory Scuba diving (again someday) Eric L. Michelsen 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 4

Outline The Language of Science Prelude to Quantum Mechanics Probabilistic reality Superpositions Interference The measurement problem Entanglement Motivation for decoherence Decoherence overview Complementarity? The four distractions Consistency, and role of the observer Speculation on free will Thanks to Dr. Eve Armstrong for very helpful comments and suggestions 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 5

The purpose of physics is to relate mathematics to reality 2 2 1 e 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 6 c 2 dv c v x v xe where dm 0 e dm m

Physics is not math Physics includes math... But we don t hide behind it Without a conceptual understanding, math is gibberish 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 7

Fundamental (macroscopic) measurable quantities How many fundamental (macroscopic) measurable quantities are there? What are they? 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 8

Four fundamental (macroscopic) quantities MKSA distance: meter, m mass: kilogram, kg time: second, s charge: ampere => coulomb, C 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 9

Science goals Now in the further development of science, we want more than just a formula. First we have an observation, Then we have numbers that we measure, Then we have a law which summarizes all the numbers. But the real glory of science is that we can find a way of thinking such that the law is evident. - Richard Feynman, Feynman Lectures on Physics, Volume 1, p26-3. 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 10

The pedagogical structure of physics Thermodynamics, & Statistical Mechanics 2C, 215 General Relativity 225 Special Relativity 110B start here Classical Mechanics 2A, 200 Quantum Mechanics 130AB Quantum Field Theory 215 Classical Electromagnetics 2B, 203 Quantum Electro- Dynamics 130C, 215 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 11

The language of science (1) Speculation: a guess Possibly hinted at by evidence, but not well supported The sky is blue because light reflected from the blue ocean illuminates it (not true) (unknown) Some dinosaurs had green skin Every scientific fact and theory started as a speculation 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 12

The language of science (2) Fact: A small piece of information Backed by solid evidence In hard science, usually repeatable evidence The sky is blue Copper is a good conductor of electricity A fact is beyond genuine doubt Despite arguments that nothing can be proved 100% If someone disputes a fact, it is still a fact I say the earth is flat Does that mean there is a debate about the earth s shape? If a thousand people say a foolish thing, it is still a foolish thing. 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 13

The language of science (3) Theory: The highest level of scientific achievement A quantitative, predictive, testable model which unifies and relates a body of facts Every scientific theory was, at one time, not generally accepted A theory becomes accepted science only after being supported by overwhelming evidence A theory is not a speculation Atomic theory of matter Maxwell s electromagnetic theory Newton s theory of gravity Germ theory of disease 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 14

Interpretations are not science Asking What is the meaning of the science? is not a scientific question Perhaps it is a philosophical question Interpretations are rooted, essentially by definition, in our everyday experience There is no reason to expect that the world beyond our experience should be explainable by our experience As a scientist, I don t have an interpretation of quantum mechanics It is what it is: The most accurate physical theory ever developed I don t have to like it 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 15

What is quantum mechanics? Is it mystic? Or is it science? It s this one 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 16

Reality is probabilistic The exact same setup, measured multiple times, produces different results If two possible outcomes never cross paths, they are indistinguishable from a coin toss A particle scatters, or it doesn t Classical probability (nothing weird) If two possible outcomes are recombined, we get interference Even from one particle at a time Everything is a wave anything beam splitter photon slit or not heavy obstacle scatters detector slit film Mach-Zehnder Interferometer Double-slit (Young s experiment) 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 17

Superpositions: not classical probabilities The particle divides and pieces takes both paths Each component gets a weight, or fraction Say, ½ and ½, but it could be 1/10 and 9/10, etc. But... each component behaves as if it were the whole particle (whole mass, whole charge, whole spin,...) In the end, for each particle, only one component is observed p = 1/2 p = 1/2 Mach-Zehnder Interferometer detector photon slit film Double-slit (Young s experiment) z+> z z x 2 z > 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 18

What s up with that cat? Cat in a box, with an unstable atom rigged to poison If the atom remains intact, the cat is alive If the atom decays, the cat is dead After one half-life the atom is in a superposition of ½ decayed and ½ intact It is not a classical probability of decay: not decayed or intact, because... Each path evolves as if it were the whole atom/cat system Implies the cat is in a superposition of dead and alive We can (in principle) recombine the paths to get interference Erwin Schrödinger Time atom intact, or decayed p = 1/2 superposition p = 1/2 life detector death detector The cat is entangled with the atom, and then the detectors, until we observe the result. 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 19

The measurement problem Why don t we ever measure superpositions? What would that even mean? We always measure definite values For decades, it s been said, Measurement collapses the wave-function (quantum state). Meaning that a measurement eliminates a superposition in favor of a more-definite state A measurement picks one component, and makes it real But what, exactly, is a measurement? Can a cat make a measurement? An insect? A bacterium? 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 20

Testing Entanglement A spin zero source emits 2 particles at a time: Randomly, one is up (positive), the other is down (negative) Alice & Bob each measure spin The sum is zero (every time) Now, Alice s measuring device gets tilted, introducing an error Therefore, sometimes their measurements are the same (both up or both down) Now her device tilts 90 o off: she is wrong ½ the time Now Bob s device also gets tilted, but the other way: he is also wrong ½ the time Classically: ¼ of the time, they re both right, + ¼ of the time, they re both wrong Classically, the net effect: the measurements add to 0 half the time spin up spin down z detector axis tilt spin detector Alice z source spin detector Bob 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 21 y x spin up spin down

The winner, and still champeen is... Recap: A spin zero source emits 2 particles at a time: Randomly, one is up (positive), the other is down (negative) Alice s measuring device gets tilted; she is wrong ½ the time Bob s device gets tilted the other way: he is also wrong ½ the time Classically, the net effect: the measurements add to 0 half the time In the actual experiment: the spins always measure the same, they never add to zero As predicted by quantum mechanics, because the particles are entangled No matter how far apart are Alice and Bob Quantum mechanics is right; classical mechanics is wrong Entanglement is spooky action at a distance Reality is either nonlocal, or noncausal In light of relativity, those are actually the same thing spin up spin down z detector axis tilt spin detector Alice z source spin detector Bob 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 22 y x spin up spin down

Motivation for decoherence Resolve the measurement problem There are no observed macroscopic superpositions, so... Where is the transition from quantum to classical? What is a measurement? I.e., when does the quantum state collapse? Can a cat collapse it? This has been resolved for 30 years As of 1980s But even most physicists don t understand it 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 23

It s time to bring QM into the modern era QM is ~90 years old But it is still taught like the 1930s Modern textbooks still ignore measurement theory Worse, they still teach hand-wavy collapse without precise definitions A surprising amount of current scientific literature is devoted to interpretations of QM A disturbing amount of decoherence literature is defending basic scientific principles, such as predictions and testability Decoherence has been around since the 1980s It has been surprisingly neglected It s not that hard For a quantum physicist, anyway Heisenberg c. 1925 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 24

Decoherence overview The decoherence model explains everything from two principles: Time evolution, according to the Schrödinger Equation Mini-collapse when a result is observed (by me!) my words IMHO Decoherence is the simplest, most intuitive QM model It is correct: It predicts the outcomes of experiments Most consistent with other laws of physics Much of the literature discussion around decoherence is meaningless Decoherence is wrong because it contradicts my preconceived notions of what reality should be like. 2 2 i V t 2m quantum state 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 25

Interference is the hallmark of quantum mechanics If a particle interferes, it s quantum If it doesn t, it s classical Quantum interference requires two things: Recombining two components of the quantum state Many trials Possibly of one particle each 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 26

Which way did it go? If we try to see which way (welcher Weg) the photon went, we prevent interference One photon triggers only one detector And no interference Suggests complementarity: a photon is either a wave, or a particle, but not both at the same time But how does it know which to be? photon photon detectors no interference 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 27

Aside: QM is more than just interference It s phase coherence between components of any superposition E.g., Stern-Gerlach is not a measurement Unless we look at the result Or any other macroscopic device gets entangled with the result z x y x x z 2 z time evolution z 2 z z+> z > z+> z > x+> coherence between components is maintained z+> or z >, but not both 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 28

Ye olde complementarity (c. 1929) Prevention of interference led to Wave-particle duality, aka complementarity Particles behave like either a wave or a particle, but not both Which one depends on the experiment There are 4 completely different phenomena that have all been called examples of complementarity Bohr microscope Fake decoherence Measurement entanglement Real decoherence? 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 29

(1) Bohr microscope Position-momentum uncertainty is from measurement clumsiness Measurement bumps the particle out of a consistent state Prevents an interference pattern I never liked this Belies the nature of wave-functions It s not: a particle has a well-defined momentum and position, but nature is mean, and won t let you know them both It is: A particle cannot have a well-defined position and momentum The error motivates a search for a kinder, gentler measuring device Such a device exists, and disproves clumsy measurement! (More soon.) particle with well-defined position and momentum illumination reflected light now future past 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 30

(2) Fake Decoherence Consider a 2-slit experiment where the energy of one path is controllable Position of interference pattern is then controllable What if energy is uncontrollable and unrepeatable, i.e. noise? Interference pattern moves randomly, washes out Uncontrolled and unrepeatable energy transfer leads to classical probabilities Loss of coherence ~10-12 s electron voltage source + detector noisy source 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 31 + no interference

(3) Measurement device entanglement Excited atom radiates a photon into the cavities a a a a up dn up up dn dn Is it a measurement? Does it cause collapse? Pr x ( x) ( x) up up dn dn * * up up up dn up dn p=½ excited atom atom resonant cavities p=½ atom no interference Scully, et. al., Nature, 351, 9-May-91, p111. 2 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 32 interference terms * dn up dn up no interference because 0 up dn dn up entanglement! * dn dn 1. The presence or absence of an observer is irrelevant. 2. The non-overlap of the measurement (photon) states is important.

Measurement device entanglement (cont.) This is a kinder, gentler measurement The radiated photon has insignificant effect on the atom s center-of-mass wave-function Disproves the Bohr microscope clumsy measurement idea excited atom resonant cavities no interference QNDM: quantum nondemolition measurement: we measure which way the atom went, but without disturbing it! 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 33

What if the entangled states overlap (i.e., are not orthogonal)? Then interference is possible With reduced visibility (smaller wiggles) 2 Pr x sys( x) ( x) ( x) excited atom up 1 dn 2 * * * * up up up dn 1 2 dn up 2 1 dn dn interference because 0 2 1 2 2 1 The overlap of the entangled states sets the visibility of any interference overlapping entanglements reduced visibility 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 34

(4) Real decoherence The two components of the split particle interact with their macroscopic environment Evolving through a cascade of progressively more entanglement with time Every air molecule it encounters introduces another entanglement Even though the environmental states may have large overlap The product of millions of numbers < 1 0 e e... e e' e'... e' excited atom up dn up 1 2 1,000,000 dn 1 2 1,000,000 interference terms e e' e e'... e e' 0 environment 1 1 2 2 1,000,000 1,000,000 e1 e2... e1,000,000 e' 1 e' 2... e' 1,000,000 no interference Decoherence is entanglement. 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 35

Real decoherence: why we don t measure superpositions Real experiments are inevitably connected to their surrounding environment Macroscopic experiments become entangled with billions of particles ( subsystems ) in the environment This means they decohere on extremely short timescales, ~10 18 s The decoherence model still requires a [mini]collapse: Consistency: after I see a measurement, all other components of the superposition disappear (the wave function collapses) In the decoherence model, this is the only weird phenomenon of quantum mechanics The rest is just a deterministic time evolution of the quantum state according to the Schrödinger equation 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 36

Decoherence vs. collapse Total loss of coherence is equivalent to collapse It doesn t matter what causes loss of coherence (fake or real decoherence) Both total loss of coherence and (old-fashioned, mythical) collapse lead to classical probabilities Equivalent to: the particle is in one definite state, but we just don t know which state it is But the old collapse model has problems: Cannot explain partial coherence (i.e., reduced visibility) Collapse is binary: it happens or it doesn t Decoherence is continuous: the overlap of entangled components becomes smoothly less Interference (wiggles) visibility smoothly drops to zero 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 37

Consistency and collapse The consistency postulate requires a collapse somewhere along the line Once I observe a result, all other possible outcomes disappear Nonlinear (nonunitary?) collapse Even in the decoherence model To allow for partial coherence, a theory (physical model) must defer any collapse to the last possible moment All other time evolution simply follows the Schrodinger equation 2 2 i V t 2m quantum state 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 38

Role of the observer (1) Observers are macroscopic When I look at a measurement device, my macroscopic body totally decoheres the possible measurement outcomes long before my brain can interpret the results Therefore, the decoherence model implies that mini-collapse occurs only after total decoherence I.e., mini-collapse implies classical probabilities This is more complete than old-fashioned collapse, because it connects the measurement all the way to the observer with just entanglement and the Schrödinger Equation It is fully consistent with partial coherence 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 39

Role of the observer (2) Observers have no say in outcomes no control no choice Reality is not subjective Science works, even Quantum Mechanics Science predicts future events based on current information Quantum Mechanics is probabilistic, but complies with calculable probabilities Observation by one person (of a detector) has no effect on measurements by any other observers So far as I am concerned, you are just a big quantum blob 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 40

Quantum summary A measurement is defined to be irreversible (for all practical purposes) Implies total loss of coherence (no interference) Classical probabilities The decoherence model is (IMHO) the simplest, most intuitive quantum model Is just the Schrödinger Equation + mini-collapse Eliminates any confusion about when is a measurement, when is collapse, etc. I don t think interpretations of QM have any scientific basis Angels on the head of a pin 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 41

Is quantum uncertainty an opening for free will? As a scientist, I don t talk about this much To date, there is no scientific input on this question Free will is a hard thing to measure In my view, quantum uncertainty might be a venue for free will Free will is consistent with entanglement Free will is different than so-called hidden variables In fact, free will is consistent with all the laws of QM As a humanitarian, I ask you to use your free will wisely 12/17/2015 SD Wetlab, Copyright 2015 Eric L. Michelsen. All rights reserved. 42

Join us in La Jolla for Jan 5 th, 6pm: Dr. James Pearce Probiotics for Crops? How microbes offer sustainable solutions for agriculture Jan 2 nd, 3pm: Bioinformatics Basics Learn how Monsanto is leveraging symbiotic relationships between plants and microorganisms that live in the soil to control disease, improve nutrient access and more to help nourish our growing world. www.thewetlab.org Learn how to use public databases and free software to investigate the patterns of life with Dr. Callen Hyland!

Join us Downtown in January for January 21 st, 6pm: Dr. Callan Hyland, The Wet Lab Simple Life: What the tiniest animals can tell us about regeneration, stem cells, and immortality Humans have a lot to learn from the simplest animals on the planet- the masters of regeneration that can regrow whole body parts, reconstruct their bodies from small fragments of tissue, and even (maybe) live forever. www.thewetlab.org