Energy Storage Elements: Capacitors and Inductors

Similar documents
ENGR 2405 Chapter 6. Capacitors And Inductors

Introduction to AC Circuits (Capacitors and Inductors)

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

An op amp consisting of a complex arrangement of resistors, transistors, capacitors, and diodes. Here, we ignore the details.

Conceptually, a capacitor consists of two conducting plates. Capacitors: Concept

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

Electric Circuits I. Inductors. Dr. Firas Obeidat

a + b Time Domain i(τ)dτ.

CHAPTER FOUR MUTUAL INDUCTANCE

CHAPTER 6. Inductance, Capacitance, and Mutual Inductance

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

Experiment Guide for RC Circuits

CIRCUIT ELEMENT: CAPACITOR

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

Electronics Capacitors

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

CS 436 HCI Technology Basic Electricity/Electronics Review

6. Introduction and Chapter Objectives

Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors

A capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2

Capacitance and Dielectrics

Physics 405/505 Digital Electronics Techniques. University of Arizona Spring 2006 Prof. Erich W. Varnes

Coulomb s constant k = 9x10 9 N m 2 /C 2

Chapter 6 Objectives

ECE2262 Electric Circuit

The Basic Capacitor. Dielectric. Conductors

Lecture 27: FRI 20 MAR

Chapter 33. Alternating Current Circuits

f = 1 T 6 a.c. (Alternating Current) Circuits Most signals of interest in electronics are periodic : they repeat regularly as a function of time.

Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance

Lecture #3. Review: Power

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Sinusoidal Response of RLC Circuits

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors

Inductance, RL Circuits, LC Circuits, RLC Circuits

Chapter 28. Direct Current Circuits

Chapter 13. Capacitors

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

EECE251 Circuit Analysis I Lecture Integrated Program Set 1: Basic Circuit Concepts and Elements

Chapter 32. Inductance

Electric Circuits Fall 2015 Solution #5

Lecture 15: Inductor & Capacitor

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

FE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS

Basics of Network Theory (Part-I)

Unit-2.0 Circuit Element Theory

Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Version 001 CIRCUITS holland (1290) 1

INDUCTANCE Self Inductance

Exercise 1: RC Time Constants

RC, RL, and LCR Circuits

Chapter 32. Inductance

Capacitor Construction

12. Introduction and Chapter Objectives

Inductance, RL and RLC Circuits

Alternating Current Circuits. Home Work Solutions

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage

3 The non-linear elements

LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1)

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

Solutions to these tests are available online in some places (but not all explanations are good)...

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1

Capacitor. Capacitor (Cont d)

EE40: Introduction to µelectronic Circuits Lecture Notes

Some Important Electrical Units

Problem Set 4 Solutions

Electromagnetic Field Theory (EMT) Lecture # 25

Mixing Problems. Solution of concentration c 1 grams/liter flows in at a rate of r 1 liters/minute. Figure 1.7.1: A mixing problem.

RADIO AMATEUR EXAM GENERAL CLASS

Chapter 27. Circuits

Capacitors are devices which can store electric charge. They have many applications in electronic circuits. They include:

Electricity. From the word Elektron Greek for amber

Circuits. David J. Starling Penn State Hazleton PHYS 212

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Handout 10: Inductance. Self-Inductance and inductors

ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly.

Response of Second-Order Systems

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics.

Electrical Eng. fundamental Lecture 1

First-order transient

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

Capacitors. Example 1

REUNotes08-CircuitBasics May 28, 2008

sections June 11, 2009

Energy Storage Elements: Capacitors and Inductors

Direct Current (DC) Circuits

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

15-884/484 Electric Power Systems 1: DC and AC Circuits

Chapter 26 Direct-Current Circuits

Driven RLC Circuits Challenge Problem Solutions

UNIT I Introduction to DC and AC circuits

Figure Circuit for Question 1. Figure Circuit for Question 2

Phys 2025, First Test. September 20, minutes Name:

Transcription:

CHAPTER 6 Energy Storage Elements: Capacitors and Inductors To this point in our study of electronic circuits, time has not been important. The analysis and designs we have performed so far have been static, and all circuit responses at a given time have depended only on the circuit inputs at that time. In this chapter, we shall introduce two important passive circuit elements: the capacitor and the inductor. Capacitors and inductors, which are the electric and magnetic duals of each other, differ from resistors in several significant ways. Unlike resistors, which dissipate energy, capacitors and inductors do not dissipate but store energy, which can be retrieved at a later time. They are called storage elements. Furthermore, their branch variables do not depend algebraically upon each other. Rather, their relations involve temporal derivatives and integrals. Thus, the analysis of circuits containing capacitors and inductors involve differential equations in time. 6.1. Capacitors A capacitor is a passive element designed to store energy in its electric field. When a voltage source v is connected to the capacitor, the amount of charge stored, represented by q, is directly proportional to v, i.e., q(t) = Cv(t) where C, the constant of proportionality, is known as the capacitance of the capacitor. The unit of capacitance is the farad (F) in honor of Michael Faraday. 1 farad = 1 coulomb/volt. 6.1.1. Circuit symbol for capacitor of C farads: 71

72 6. ENERGY STORAGE ELEMENTS: CAPACITORS AND INDUCTORS 6.1.2. Since i = dq dt, then the current-voltage relationship of the capacitor is (6.2) i = C dv dt. Note that in (6.2), the capacitance value C is constant (time-invariant) and that the current i and voltage v are both functions of time (time-varying). So, in fact, the full form of (6.2) is i(t) = C d dt v(t). Hence, the voltage-current relation is v(t) = 1 C t t o i(τ)dτ + v(t o ) where v(t o ) is the voltage across the capacitor at time t o. Note that capacitor voltage depends on the past history of the capacitor current. Hence, the capacitor has memory. 6.1.3. The instantaneous power delivered to the capacitor is p(t) = i(t) v(t) = (C ddt ) v(t) v(t).

6.1. CAPACITORS 73 The energy stored in the capacitor is w(t) = t p(τ)dτ = 1 2 Cv2 (t). In the above calculation, we assume v( ) = 0, because the capacitor was uncharged at t =. 6.1.4. Capacitors are commercially available in different values and types. Typically, capacitors have values in the picofarad (pf) to microfarad (µf) range. 6.1.5. Remarks: (a) The word capacitor is derived from this element s capacity to store energy in an electric field. (b) A capacitor is an open circuit to dc. When the voltage across a capacitor is not changing with time (i.e., dc voltage), its derivative wrt. time is dv dt = 0 and hence the current through the capacitor is i(t) = C dv dt = C 0 = 0. (c) The voltage on a capacitor cannot change abruptly (since i = C dv dt ) A discontinuous change in voltage requires an infinite current, which is physically impossible. (d) The ideal capacitor does not dissipate energy. It takes power from the circuit when storing energy in its field and returns previously stored energy when delivering power to the circuit. Example 6.1.6. If a 10 µf is connected to a voltage source with v(t) = 50 sin 2000t determine the current through the capacitor.

74 6. ENERGY STORAGE ELEMENTS: CAPACITORS AND INDUCTORS Example 6.1.7. Determine the voltage across a 2-µF capacitor if the current through it is i(t) = 6e 3000t ma Assume that the initial capacitor voltage (at time t = 0) is zero. Example 6.1.8. Obtain the energy stored in each capacitor in the figure below under dc conditions.

6.2. SERIES AND PARALLEL CAPACITORS 75 6.2. Series and Parallel Capacitors We know from resistive circuits that series-parallel combination is a powerful tool for simplifying circuits. This technique can be extended to series-parallel connections of capacitors, which are sometimes encountered. We desire to replace these capacitors by a single equivalent capacitor C eq. 6.2.1. The equivalent capacitance of N parallel-connected capacitors is the sum of the individual capacitance. C eq = C 1 + C 2 + + C N The equivalent capacitance of N series-connected capacitors is the the reciprocal of the sum of the reciprocals of the individual capacitances. 1 C eq = 1 C 1 + 1 C 2 + + 1 C N Example 6.2.2. Find the C eq.

76 6. ENERGY STORAGE ELEMENTS: CAPACITORS AND INDUCTORS 6.3. Inductors An inductor is a passive element designed to store energy in its magnetic field. Inductors find numerous applications in electronic and power systems. They are used in power supplies, transformers, radios, TVs, radars, and electric motors. 6.3.1. Circuit symbol of inductor: 6.3.2. If a current is allowed to pass through an inductor, the voltage across the inductor is directly proportional to the time rate of change of the current, i.e., v(t) = L d dt i(t), where L is the constant of proportionality called the inductance of the inductor. The unit of inductance is henry (H), named in honor of Joseph Henry. 1 henry equals 1 volt-second per ampere.

6.3. INDUCTORS 77 6.3.3. By integration, the current-voltage relation is i(t) = 1 L t where i(t o ) is the current at time t o. t o v(τ) dτ + i(t o ), 6.3.4. The instantaneous power delivered to the inductor is p(t) = v(t) i(t) = (L ddt ) i(t) i(t) The energy stored is w(t) = t p(τ) dτ = 1 2 Li2 (t). 6.3.5. Like capacitors, commercially available inductors come in different values and types. Typical practical inductors have inductance values ranging from a few microhenrys (µh), as in communication systems, to tens of henrys (H) as in power systems. 6.3.6. Remarks: (a) An inductor acts like a short circuit to dc. The voltage across an inductor is zero when the current is constant. (b) The current through an inductor cannot change instantaneously. This opposition to the change in current is an important property of the inductor. A discontinuous change in the current through an inductor requires an infinite voltage, which is not physically possible. (c) The ideal inductor does not dissipate energy. The energy stored in it can be retrieved at a later time. The inductor takes power from the circuit when storing energy and delivers power to the circuit when returning previously stored energy.

78 6. ENERGY STORAGE ELEMENTS: CAPACITORS AND INDUCTORS Example 6.3.7. If the current through a 1-mH inductor is i(t) = 20 cos 100t ma, find the terminal voltage and the energy stored. Example 6.3.8. Find the current through a 5-H inductor if the voltage across it is { 30t 2, t > 0 v(t) = 0, t < 0. In addition, find the energy stored within 0 < t < 5 s.

6.3. INDUCTORS 79 Example 6.3.9. The terminal voltage of a 2-mH inductor is v = 10(1 t) V. Find the current flowing through it at t = 4 s and the energy stored in it within 0 < t < 4 s. Assume i(0) = 2 A. Example 6.3.10. Determine v C, i L and the energy stored in the capacitor and inductor in the following circuit under dc conditions.

80 6. ENERGY STORAGE ELEMENTS: CAPACITORS AND INDUCTORS Example 6.3.11. Determine v C, i L and the energy stored in the capacitor and inductor in the following circuit under dc conditions.

6.4. SERIES AND PARALLEL INDUCTORS 81 6.4. Series and Parallel Inductors The equivalent inductance of N series-connected inductors is the sum of the individual inductances, i.e., L eq = L 1 + L 2 + + L N The equivalent inductance of N parallel inductors is the reciprocal of the sum of the reciprocals of the individual inductances, i.e., 1 = 1 + 1 + + 1 L eq L 1 L 2 L N Note that (a) inductors in series are combined in exactly the same way as resistors in series and (b) inductors in parallel are combined in the same way as resistors in parallel.

tors in parallel. For two inductors in parallel (N = 2), Eq. (6.30) becomes 1 = 1 + 1 or L eq = L 1L 2 (6.31) L eq L 1 L 2 L 1 + L 2 It is appropriate at this point to summarize the most important characteristics of the three basic circuit elements we have studied. The summary is given in Table 6.1. 82 6. ENERGY STORAGE ELEMENTS: CAPACITORS AND INDUCTORS TABLE 6.1 Important characteristics of the basic elements. Relation Resistor (R) Capacitor (C) Inductor (L) v-i: v = ir v = 1 idt+ v(t 0 ) v = L di C t 0 dt i-v: i = v/r i = C dv i = 1 t idt+ i(t 0 ) dt L t 0 t p or w: p = i 2 R = v2 R w = 1 2 Cv2 w = 1 2 Li2 Series: R eq = R 1 + R 2 C eq = C 1C 2 C 1 + C 2 L eq = L 1 + L 2 Parallel: R eq = R 1R 2 R 1 + R 2 C eq = C 1 + C 2 L eq = L 1L 2 L 1 + L 2 At dc: Same Open circuit Short circuit Circuit variable that cannot change abruptly: Not applicable v i Passive sign convention is assumed. E X A M P LExampleE 6. 1 1 6.4.1. Find the equivalent inductance L eq of the circuit shown below. Find the equivalent inductance of the circuit shown in Fig. 6.31.

6.5. APPLICATIONS: INTEGRATORS AND DIFFERENTIATORS 83 6.5. Applications: Integrators and Differentiators Capacitors and inductors possess the following three special properties that make them very useful in electric circuits: (a) The capacity to store energy makes them useful as temporary voltage or current sources. Thus, they can be used for generating a large amount of current or voltage for a short period of time. (b) Capacitors oppose any abrupt change in voltage, while inductors oppose any abrupt change in current. This property makes inductors useful for spark or arc suppression and for converting pulsating dc voltage into relatively smooth dc voltage. (c) Capacitors and inductors are frequency sensitive. This property makes them useful for frequency discrimination. The first two properties are put to use in dc circuits, while the third one is taken advantage of in ac circuits. In this final part of the chapter, we will consider two applications involving capacitors and op amps: integrator and differentiator.

84 6. ENERGY STORAGE ELEMENTS: CAPACITORS AND INDUCTORS 6.5.1. Integrator. An integrator is an op amp circuit whose output is proportional to the integral of the input signal. We obtain an integrator by replacing the feedback resistor R f in the inverting amplifier by a capacitor. This gives which implies d dt v o(t) = 1 RC v i(t), t v o (t) = 1 v i (τ)dτ + v o (0). RC 0 To ensure that v o (0) = 0, it is always necessary to discharge the integrators capacitor prior to the application of a signal. In practice, the op amp integrator requires a feedback resistor to reduce dc gain and prevent saturation. Care must be taken that the op amp operates within the linear range so that it does not saturate.

6.5. APPLICATIONS: INTEGRATORS AND DIFFERENTIATORS 85 6.5.2. Differentiator. A differentiator is an op amp circuit whose output is proportional to the differentiation of the input signal. We obtain a differentiator by replacing the input resistor in the inverting amplifier by a capacitor. This gives v o (t) = RC d dt v i(t). Differentiator circuits are electronically unstable because any electrical noise within the circuit is exaggerated by the differentiator. For this reason, the differentiator circuit above is not as useful and popular as the integrator. It is seldom used in practice.