The Evolution and Explosion of Mass-Accreting Pop III Stars. Ken Nomoto (IPMU / U.Tokyo)

Similar documents
On the Range of Supernova Explosion Energies. K. Nomoto (IPMU / U. Tokyo)

Supernova nucleosynthesis and stellar population in the early Universe

The Galactic Halo As Seen By The Hamburg/ESO Survey. Judy Cohen (Caltech)

Evolution, Death and Nucleosynthesis of the First Stars

Bridging the near and the far: constraints on first star formation from stellar archaeology. Raffaella Schneider Sapienza University of Rome

Shklovskii s predictions on SN1987A

Abundance Constraints on Early Chemical Evolution. Jim Truran

The Empirical Grounds of the SN-GRB Connection. M. Della Valle INAF-Napoli ICRANet-Pescara

stelle e galassie primordiali

HOW MUCH 56 Ni CAN BE PRODUCED IN CORE-COLLAPSE SUPERNOVAE? EVOLUTION AND EXPLOSIONS OF 30Y100 M STARS

Stellar Yields of Rotating First Stars:

Galac%c Halo. Open Cluster

Explosive Nucleosyntheis

The impact of reduced mass loss rates on

On the progenitors of (Long) GRBs

Nucleosynthesis in Core Collapse Supernovae: Knowns and Unknown. Friedrich-K. Thielemann Dept. of Physics University of Basel

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY

CORE-COLLAPSE VERY MASSIVE STARS: EVOLUTION, EXPLOSION, AND NUCLEOSYNTHESIS OF POPULATION III M STARS

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger

The Supernova/Gamma-Ray Burst Connection. Jens Hjorth Dark Cosmology Centre Niels Bohr Institute University of Copenhagen

what powers the brightest supernovae?

NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS

arxiv: v1 [astro-ph.ga] 12 Oct 2017

in the Milky NOW Way AND and THEN dwarf galaxies Stefania Salvadori

Modeling abundances! in star forming galaxies!

Chapter 6: Stellar Evolution (part 2): Stellar end-products

The Theory of Supernovae in Massive Binaries

Signatures of Peculiar Supernova Nucleosynthesis in Extremely α-enhanced Metal-poor Stars

Carbon Enhanced Metal Poor (CEMP) Stars and the Halo System of the Milky Way

A Turbulent Dynamo in Rotating Magnetized Core-Collapse Supernovae

10 Years of Super-Luminous Supernovae: Analytical and Numerical Models

The physical origins of the extreme luminosity for slowly fading Super-luminous Supernovae

The First Stars and their Impact on Cosmology

arxiv:astro-ph/ v2 9 Aug 2005

Dust Formation in Various Types of Supernovae

Nuclear Physics. of Core Collapse Supernova

EMISSION FROM ROTATING PAIR INSTABILITY SUPERNOVAE

Day 1. Nucleosynthesis of massive stars and supernovae.! Chiaki Kobayashi! (Univ. of Hertfordshire, UK)!

Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO)

The Early Generations of Low-metallicity Stars

Stellar Winds Jorick Vink (Keele University)

Uncertainties in Chemical Enrichment Models

Long Gamma Ray Bursts from metal poor/pop III stars. Sung-Chul Yoon (Amsterdam) Norbert Langer (Utrecht) Colin Norman (JHU/STScI)

THE ENERGY OF STARS NUCLEAR ASTROPHYSICS THE ORIGIN OF THE ELEMENTS

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

MIXING IN ZERO AND SOLAR METALLICITY SUPERNOVAE

The Pop III IMF: A Progress Report. Michael L. Norman University of California, San Diego & San Diego Supercomputer Center

The Supermassive Seeds of Supermassive Black Holes

Go upstream of the Milky Way!

Dust production by various types of supernovae

Ultra-stripped Type Ic supernovae generating double neutron stars

Progenitor signatures in Supernova Remnant Morphology. Jacco Vink Utrecht University

The First Stars, Supernovae, Nucleosynthesis, and Galactic Evolution

Cat's Eye Nebula, APOD 4 Sep 02, Corradi & Goncalves. Falk Herwig:»Nuclear Astrophysics with Neutron Facilities«MSU - 14 Feb 05

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn

Supernova Explosion Mechanisms

The Origin of Supermassive Black Holes. Daniel Whalen. McWilliams Fellow Carnegie Mellon

arxiv: v2 [astro-ph.co] 6 Sep 2012

Explosion Geometry of Supernovae Revealed by Spectropolarimetry with Subaru/FOCAS

The case for Magnetar power in SNe Ib/c and SLSNe. Paolo A. Mazzali and LJMU group: Simon PrenCce Chris Ashall and Elena Pian

A Detailed Look at Cas A: Progenitor, Explosion & Nucleosynthesis

Astronomy. Astrophysics. The most metal-poor damped Lyman α system at z < 3: constraints on early nucleosynthesis

Stellar Archaeology: New Science with Old Stars

Extremely Metal-Poor Stars

Simulations of First Star Formation

Ryan Cooke (Morrison Fellow, UCSC)

arxiv: v1 [astro-ph.ga] 10 Oct 2018

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

PoS(GRB 2012)103. Constraints to the GRB central engine from jet penetrability to massive stars

Back to the Future: The HK Survey of Beers, Preston, & Shectman

Nuclear Astrophysics

The Pop III/II Transition

Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s)

Lecture 15. Explosive Nucleosynthesis and the r-process

Light Element Nucleosynthesis: The Li-Be-B Story

Presupernova evolution and explosion of massive stars: the role of mass loss during the Wolf-Rayet stage

Core-collapse supernovae are thermonuclear explosions

Galactic Projects at ESO Disk and halo. Birgitta Nordström Niels Bohr Institute Copenhagen University Denmark

THE 82ND ARTHUR H. COMPTON LECTURE SERIES

Supernova events and neutron stars

Evolution and Final Fates of Accreting White Dwarfs. Ken Nomoto (Kavli IPMU / U. Tokyo)

arxiv: v1 [astro-ph.he] 18 Jul 2017

UNCERTAINTIES IN SUPERNOVA YIELDS. I. ONE-DIMENSIONAL EXPLOSIONS

FORMATION OF SUPERMASSIVE BLACK HOLES Nestor M. Lasso Cabrera

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

The evolution of isotope ratios in the Milky Way Galaxy

Unravelling the Explosion Mechanisms

Nobuya Nishimura Keele University, UK

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models

A Zoo of Ancient Stellar Relics in our Galactic Halo

The evolution of supernova progenitors

The Radiative Transport of Dust in Primordial Galaxies and Second-Generation Star Formation

Superluminous supernovae: 56 Ni power versus magnetar radiation

Photometric and Spectroscopic Observations of Type Ib Supernova SN 2012au by Kanata-Telescope

Dust production in a variety of types of supernovae

Diverse Energy Sources for Stellar Explosions. Lars Bildsten Kavli Institute for Theoretical Physics University of California Santa Barbara

1.1 Introduction. 1.2 Evolution of massive stars

Nucleosynthesis Process. Ba: s-process Ag, Eu: r-process

Chapter 12 Stellar Evolution

Stars and their properties: (Chapters 11 and 12)

Transcription:

The Evolution and Explosion of Mass-Accreting Pop III Stars Ken Nomoto (IPMU / U.Tokyo)

Pop III Stars Pop III GRBs Pop III SNe? M > 10 5 M :SMS (Super Massive Stars) GR instability Collapse M ~ 300-10 5 M : Collapse (& Explosion ) IMBH SMBH? Pop III GRBs? M ~ 140-300M : Pair Instability SNe Complete Disruption M ~ 8-140M : Core Collapse Pop III GRBs, Hypernovae SNe II

Unusual SNe --Pop III SNe? Luminous SNe (IIn, II-L, Ic) (-23 mag) Pair Instability? Core-Collapse? GRB? CSM Interaction? Faint SNe (IIn, Ic) (-14 mag) SN Impostor? Super AGB? Fallback SN? non-sn GRB?

Formation of Pop III.1 Stars Dark Matter Halo (~10 6 M, z ~ 20) Primordial Cloud (~10 4 M ) H 2 formation and cooling Collapsing Core (~10 3 M ) Static Proto-Star (~0.01 M ) Mass-Accretion Stellar Evolution, Explosion

M J ~1000 M ~0.01 M Yoshida et al. Bromm et al. Abel et al. O Shea & Norman

Accretion onto Protostar First Star 4 K

(McKee et al.) Pop III.1 & Pop III.2 Pop III.1 Gas of primordial composition Initial conditions: purely cosmological Pop III.2 Gas of primordial composition Initial conditions modified by radiative and kinetic feedback from a Pop III.1 star, but not chemical feedback

Formation of Pop III.2 Stars Dark Matter Halo Primordial, reionized cloud H 2 & HD formation and line cooling Collapsing Core (~40 M ) Static Proto-Star Mass-Accretion Stellar Evolution, Explosion

Accretion Rates (Yoshida+ 08) (Poo III.2) (Pop III.1) Ohkubo, Nomoto et al. (09)

Accretion rates with stellar feedback

Accretion rates with stellar feedback McKee & Tan Ohkubo, Nomoto et al. (09)

Mass Accreting Pop III Stars Expansion Ohkubo, Nomoto, et al. (09)

Pop III Stars: Mass Accretion Pair-Instability (140-300 M ) or Core-Collapse Accretion Final Mass pp 3 α CNO 1 M Ohkubo et al. (2009)

Pop III Stars: Mass Accretion Core Collapse (40-140 M ) LSN & GRB? Accretion Final Mass pp 3 α CNO 1 M Ohkubo et al. (2009)

Final Fates of Accreting Pop III Stars Hypothetical Scenario: (dm/dt : uncertain) (stellar feedback) Pop III.1 M > 300 M Core Collapse M = 140-300 M PISN? M = 40 140 M?? Pop III.2 M < 50 M Core Collapse

Pop III GRBs? 915 M 40 M He Star (Suwa 2010)

Extremely Luminous SNe SN Ic 2007bi (Pair-Instability?) M( 56 Ni) ~ 5 M (SN 1987A x 70) Gal-Yam et al. 2009

SNe 2007bi, 2006gy Core-Collapse vs. PISN Core Collapse PISN PISN Core Collapse Rise time Moriya et al.

56 Co-decay

Models for Luminous SNe Core-Collapse PISN M (ms) = 100 M 270 M M (C+O core) = 43 M 121 M M (ejecta) = 39 M 121 M E (kin) = 3.3 E52 erg 7E52 erg M ( 56 Ni) = 6.1 M 9.8 M LC: Rise time = 52-85 days 150 days Jet-induced Explosion Aspherical Hypernova GRB?

Evolution of the 90M Star Oscillation Fe core collapse E 51 =30 M( 56 Ni)=5M (Umeda & Nomoto)

100-130 M : Nuclear Instability Woosley, Blinnikov, Heger (2007)

More Luminous SN 2005ap Quimby + (2009)

Interaction with Optically Thick Circumstellar Matter dm/dt=0.1 Ms/y Accreting matter In Pop III star? Moriya et al. (2010)

Pair Instability SN vs EMP stars Umeda & Nomoto 2002

Pop III.2: Core Collapse SN (20M, Z=0, E 51 =1 ) Tominaga, Umeda, Nomoto 07 (E51=1, M(Ni)=0.07) Heger & Woosley 08 (E51=1.2 mix S=4 piston) Limongi, Straniero, Chieffi 00 (E51=1, M(Ni)=0.1)

Poor Fit to Extremely Metal-Poor (EMP) Stars High Explosion Energy (Cayrel et al. 2004 )

SN II Yields ~ Metal Poor (MP Stars EPM Stars? Kobayashi, Umeda, Nomoto et al. 2006

[Co/Fe] [Cr/Fe] 0 0 Co Cr [Mn/Fe] -4 [Fe/H] -4 [Fe/H] 0 [Zn/Fe] 0 Mn Zn -4 [Fe/H] -4 [Fe/H] Cayrel et al. (2004)

Hypernova Nucleosynthesis (1) M(Complete Si-burning) (Zn, Co)/Fe (Mn, Cr)/Fe Fe/(O, Si) (2) More α rich entropy Zn/Fe 64 Ge Low energy High energy Ti/Fe (3) More O burns (Si, S, Ca)/O

Normal supernova vs. Hypernova 25M model Normal SN (E 51 =1) Hypernova (E 51 =10)

EMP stars vs. Hypernova (E 51 =10) Tominaga, Umeda, Nomoto (2006)

Hypernova in Prague

Hypernova in Prague

Hyper Metal-Poor (HMP) Stars [Fe/H] < -5 [C, N, O/ Fe] > 3 Christlieb, Frebel, Aoki, et al.

M=25M, E=7 10 50 erg (Weak Explosion) [Fe/H]=-5.3 Log X 0-1 58 Ni 56 Fe O He C H Ne C -2-3 Ti Mg O -4 M BH ~6M 2 4 6 8 Mr (M ) Fallback Ejecta (little Fe) Mixing Umeda & Nomoto (2003) N

Fallback model for SN 2008ha - CO star core-collapse model (13 M 2.7 M ) Moriya et al.

Jet-induced Nucleosynthesis Jet BH/NS Jet BH Special relativistic hydrodynamics (Tominaga et al. ApJL 2007) cf. Collapsar (e.g., MacFadyen et al. 01) Magnetorotational Supernovae (e.g., Moiseenko et al. 06). E dep : Energy deposition rate (Rotation, B etc.) Same mass and explosion energy 40M 1.5x10 52 erg

Mixing-fallback vs. Jet SN model High entropy due to the energy concentration. Mixing-fallback model Jet SN model

(Frebel et al. 2004) HMP Stars Jet-induced SN models (Christlieb et al. 2002) High E High Co/Fe Fallback Small Fe Dark Hypernova Tominaga et al. 2007

M( 56 Ni) Bright HN Smaller E dep. smaller M( 56 Ni) and larger [C/Fe] [C/Fe] Dark HN HMP stars UMP stars High E Fallback. CEMP stars EMP stars Tominaga et al. (2007) E dep

Dark Hypernova non-sn GRB GRB 060614 Della Valle et al. 2006 Fynbo et al. 2006 Gal-Yam et al. 2006

First stars --Metal-poor stars -- GRB connection Hypernovae with relativistic jets M ms ~ 20 130 M sun Larger. E dep Smaller GRBs GRB-HNe No-SN GRBs Metal-Poor stars EMP stars UMP stars HMP stars

Carbon-enhanced metal-poor DLA z = 2.34, [Fe/H] = -3.04, [C/Fe] = +1.53 (Cooke et al. 2010)

Carbon-enhanced metal-poor DLA z = 2.34, [Fe/H] = -3.04, [C/Fe] = +1.53 (Cooke et al. 2010) SN model : M = 25 M, E 51 = 1 (Kobayashi et al. 2011)

Faint Supernovae EMP (extremely metal-poor) Stars Fallback Supernovae: small M(Ni) large [CNO/Fe] CEMP (1) Jet-induced Hypernovae large [Zn/Fe], [Co/Fe], [Ti/Fe] (2) Weak Explosion Mixing & Fallback

Final Fates of Accreting Pop III Stars Hypothetical Scenario: (dm/dt : uncertain) (stellar feedback) Pop III.1 M > 300 M Core Collapse PISN? M = 40 140 M?? Pop III.2 M < 50 M Core Collapse *Extremely Luminous Supernovae: PISNe vs. Core-Collapse Hypernovae(GRB?) Circumstellar Interaction?