Introduction to Transverse Beam Optics. II.) Twiss Parameters & Lattice Design

Similar documents
Lattice Design in Particle Accelerators

Transverse Beam Dynamics II

Bernhard Holzer, CERN-LHC

Lattice Design in Particle Accelerators Bernhard Holzer, CERN. 1952: Courant, Livingston, Snyder: Theory of strong focusing in particle beams

Introduction to Particle Accelerators Bernhard Holzer, DESY

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC

Lattice Design II: Insertions Bernhard Holzer, DESY

Introduction to Transverse Beam Dynamics

Practical Lattice Design

Accelerator Physics. Elena Wildner. Transverse motion. Benasque. Acknowldements to Simon Baird, Rende Steerenberg, Mats Lindroos, for course material

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

Thu June 16 Lecture Notes: Lattice Exercises I

Lattice Design II: Insertions Bernhard Holzer, CERN

Basic Mathematics and Units

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

Transverse dynamics. Transverse dynamics: degrees of freedom orthogonal to the reference trajectory

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Accelerator Physics Final Exam pts.

Transverse Dynamics II

Bernhard Holzer, DESY-HERA-PETRA III / CERN-LHC

Beam Transfer Lines. Brennan Goddard CERN

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Accelerator Physics Homework #3 P470 (Problems: 1-5)

PBL SCENARIO ON ACCELERATORS: SUMMARY

Introduction to Accelerators

Practical Lattice Design

Introduction to particle accelerators

Particle Accelerators: Transverse Beam Dynamics

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

Low Emittance Machines

Introduction to Transverse Beam Dynamics

TWISS FUNCTIONS. Lecture 1 January P.J. Bryant. JUAS18_01- P.J. Bryant - Lecture 1 Twiss functions

Introduction to Collider Physics

Introduction to Longitudinal Beam Dynamics

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23,

Longitudinal Dynamics

Putting it all together

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation

An Introduction to Particle Accelerators. v short

Chromatic aberration in particle accelerators ) 1

Medical Linac. Block diagram. Electron source. Bending magnet. Accelerating structure. Klystron or magnetron. Pulse modulator.

Basic Mathema,cs. Rende Steerenberg BE/OP. CERN Accelerator School Basic Accelerator Science & Technology at CERN 3 7 February 2014 Chavannes de Bogis

Equations of motion in an accelerator (Lecture 7)

Tools of Particle Physics I Accelerators

Injection, extraction and transfer

arxiv: v1 [physics.acc-ph] 26 May 2017

Engines of Discovery

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source*

Low Emittance Machines

Physics 610. Adv Particle Physics. April 7, 2014

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1

Hill s equations and. transport matrices

50 MeV 1.4 GeV 25GeV 450 GeV 8 TeV. Sources of emittance growth CAS 07 Liverpool. Sept D. Möhl, slide 1

ILC Damping Ring Alternative Lattice Design **

Effect of Insertion Devices. Effect of IDs on beam dynamics

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity.

COMBINER RING LATTICE

LECTURE 7. insertion MATCH POINTS. Lattice design: insertions and matching

Low Emittance Machines

3. Synchrotrons. Synchrotron Basics

... Particle acceleration whithout emittance or beta function

The LHC. Part 1. Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna

4. Statistical description of particle beams

Compressor Lattice Design for SPL Beam

Theory English (Official)

SC magnets for Future HEHIHB Colliders

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI

8. THEOREM If the partial derivatives f x. and f y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Part II Effect of Insertion Devices on the Electron Beam

Measurement of beam polarisation and beam energy in one device

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Historical developments. of particle acceleration

Physics 152. Magnets Earth/Dipole Field Charges & Magnetic Fields. Announcements. Friday, April 13, 2007

Luminosity Goals, Critical Parameters

Beam losses versus BLM locations at the LHC

Linear Imperfections Oliver Bruning / CERN AP ABP

Modern Accelerators for High Energy Physics

Lattice Design and Performance for PEP-X Light Source

Nonlinear Single-Particle Dynamics in High Energy Accelerators

3. Particle accelerators

Operational Experience with HERA

Non-linear dynamics Yannis PAPAPHILIPPOU CERN

P 3 SOURCE SOURCE IMAGE

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

ILC Damping Ring Alternative Lattice Design (Modified FODO)

10 GeV Synchrotron Longitudinal Dynamics

Accelerator Physics Weak Focussing. A. Bogacz, G. A. Krafft, and T. Zolkin Jefferson Lab Colorado State University Lecture 2

MAGNET SYSTEMS FOR LARGE PARTICLE ACCELERATORS

Heavy-Ion Collimation at the Large Hadron Collider - Simulations and Measurements -

S9: Momentum Spread Effects and Bending S9A: Formulation

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods

Beam Dynamics with Space- Charge

Transcription:

Introduction to Transverse Beam Optics Bernhard Holzer, CERN II.) Twiss Parameters & Lattice esign ( Z X Y) Bunch in a storage ring

Introduction to Transverse Beam Optics Bernhard Holzer, CERN... don't worry: it's still the "ideal world" Historical note: ε & β... Particle acceleration whithout emittance or beta unction 4 N ntz e i N( * 4 ( 8 ) r K sin ( / ) N(θ) Rutherord Scattering, 9 Using radioactive particle sources: α-particles o some ev energy θ

Reminder o Part I Equation o otion: Solution o Trajectory Equations K K K k k hor. plane: vert. Plane: s * s drit l oc cos( K l) K sin( K l) sin( K l) K cos( K l) deoc cosh( K l K sinh( K l sinh( K l K cosh( K l

Transormation through a system o lattice elements combine the single element solutions by multiplication o the matrices * * * * total QF Q Bend *... ( s,s)* s s ocusing lens dipole magnet deocusing lens court. K. Wille (s) typical values in a strong oc. machine: mm, mrad s

Question: what will happen, i the particle perorms a second turn?... or a third one or... turns s

Astronomer Hill: dierential equation or motions with periodic ocusing properties Hill s equation Eample: particle motion with periodic coeicient equation o motion: ( s) k( s) ( s) restoring orce const, k(s) = depending on the position s k(s+l) = k(s), periodic unction we epect a kind o quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring.

The Beta Function General solution o Hill s equation: (i) ( s) ( s) cos( ( s) ) ε, Φ = integration constants determined by initial conditions β(s) periodic unction given by ocusing properties o the lattice quadrupoles ( s L) ( s) Inserting (i) into the equation o motion () s s ds () s Ψ(s) = phase advance o the oscillation between point and s in the lattice. For one complete revolution: number o oscillations per turn Tune Q y ds o ( s)

8.) The Beam Emittance General solution o Hill s equation: ( s) ( s) cos ( s) ( s) ( s)cos ( s) sin ( s) () s β(s) = periodic unction given by ocusing properties o the lattice ( s L) ( s) ε = constant, determined by initial conditions o the particle ensemble. ( s)* ( s) ( s) ( s) ( s) ( s) ( s) Liouville: in reasonable storage rings area in phase space is constant. A = π*ε=const ε beam emittance = woozilycity o the particle ensemble, intrinsic beam parameter, cannot be changed by the oc. properties. Scientiiquely spoken: area covered in transverse, phase space and it is constant!!!

Phase Space Ellipse particel trajectory: ( s) ( s) cos ( s) ma. Amplitude: ˆ ( s) at that position? put ˆ ( s) into ( s)* ( s) ( s) ( s) ( s) ( s) ( s) and solve or / * * A high β-unction means a large beam size and a small beam divergence. et vice versa!!! In the middle o a quadrupole β is maimum, α = zero! and the ellipse is lat

Phase Space Ellipse ( s) ( s) ( s) ( s) ( s) ( s) ( s) ( s) ( s) () s ( s) () s solve or, and determine d ˆ via: d ˆ ˆ shape and orientation o the phase space ellipse depend on the Twiss parameters β α γ

Emittance o the Particle Ensemble: ( s) ( s) cos( ( s) ) ˆ ( s) ( s) Gauß Particle istribution: N ( ) e e particle at distance σ rom centre 68.3 % o all beam particles single particle trajectories, N per bunch LHC: * 5* m*8m. 3 mm aperture requirements: r = * σ

Emittance o the Particle Ensemble: particle bunch ( Z X Y) Eample: HERA beam parameters in the arc ( ) 8 m 7* 9 rad m ( ).75 mm

9.) Transer atri yes we had the topic already general solution o Hill s equation ( s) ( s) cos ( s) ( s) ( s)cos ( s) sin ( s) () s remember the trigonometrical gymnastics: sin(a + b) = etc s ( ) s cos s cos sin s sin ( s) cos cos sin sin sin cos cos sin s s s s s s s starting at point s() = s, where we put Ψ() = cos, sin ( ) inserting above

( s) s cos sin sin s s s s s ( s) cos ( )sin cos sin s s s s s s s s which can be epressed... or convenience... in matri orm s s cos sin sin ( )cos ( )sin s s s s s s s s s s cos sin s s s * we can calculate the single particle trajectories between two locations in the ring, i we know the α β γ at these positions. * and nothing but the α β γ at these positions. *! * Äquivalenz der atrizen

.) Periodic Lattices transer matri or particle trajectories as a unction o the lattice parameters s cos sin sin ( )cos ( )sin s s s s s s s s s s cos sin s s s This rather ormidable looking matri simpliies considerably i we consider one complete turn elta Electron Storage Ring ( s) cos turn s sin s sin turn turn cos s turn sin s turn sin turn turn s s L ds ( s) ψ turn = phase advance per period ds Q * Tune: Phase advance per turn in units o π ( s)

Stability Criterion: Question: what will happen, i we do not make too many mistakes and your particle perorms one complete turn? atri or turn: cos sin sin turn s turn s turn sin cos sin s turn turn s turn cos sin atri or N turns: J N cos J sin cos N J sin N N The motion or N turns remains bounded, i the elements o N remain bounded real cos Trace()

stability criterion. proo or the disbelieving collegues!! atri or turn: cos sin sin turn s turn s turn sin cos sin s turn turn s turn cos sin atri or turns: I J I * cos J *sin * I *cos J *sin I * cos cos IJ *cos sin JI *sin cos J sin sin now I I I *J J * I * * I * J J * I J * I I * cos( ) J *sin( ) I *cos( ) J *sin( )

.) Transormation o α, β, γ consider two positions in the storage ring: s, s s s where QF Q B rit QF... C C S S since ε = const (Liouville):, y Beta unction in a storage ring

epress, as a unction o,. ẑ ρ s s θ s... remember W = CS -SC = s s S S C C S S C C inserting into ε sort via, and compare the coeicients to get... ( C C ) ( S S )( C C ) ( S S )

( s) C SC S ( s) CC ( SC S C) SS ( s) C S C S in matri notation: s C SC S CC SC CS SS C S C S!.) this epression is important.) given the twiss parameters α, β, γ at any point in the lattice we can transorm them and calculate their values at any other point in the ring. 3.) the transer matri is given by the ocusing properties o the lattice elements, the elements o are just those that we used to calculate single particle trajectories. 4.) go back to point.)

.) Lattice esign: how to build a storage ring High energy accelerators circular machines somewhere in the lattice we need a number o dipole magnets, that are bending the design orbit to a closed ring Geometry o the ring: centriugal orce = Lorentz orce e* v* B mv mv e* B p / B* p/ e p = momentum o the particle, ρ = curvature radius Bρ= beam rigidity Eample: heavy ion storage ring TSR 8 dipole magnets o equal bending strength

Circular Orbit: deining the geometry α ρ ds dl ds B * dl B * ield map o a storage ring dipole magnet The angle swept out in one revolution must be π, so Bdl B* Bdl * p q or a ull circle Nota bene: B B 4 is usually required!!

Eample LHC: 7 GeV Proton storage ring dipole magnets N = 3 l = 5 m q = + e B dl N l B p / e 9 7 ev B 8 m 3 5 m 3 s e 8.3 Tesla

Focusing orces single particle trajectories ρ y'' K * y K k / hor. plane y K k vert. plane dipole magnet quadrupole magnet k B p / q g p / q Eample: HERA Ring: Bending radius: ρ = 58 m Quadrupol Gradient: g = T/m k = 33.64* -3 /m /ρ =.97 * -6 /m For estimates in large accelerators the weak ocusing term /ρ can in general be neglected Solution or a ocusing magnet y ' y s y K s K s K ( ) *cos( * ) *sin( * ) y '( s) y * K *sin( K * s) y ' *cos( K * s)

The Twiss parameters α, β, γ can be transormed through the lattice via the matri elements deined above. S C SC S CC ' SC ' S ' C SS ' * C ' S ' C ' S ' Question: What does that mean????

ost simple eample: drit space C C' S S' l particle coordinates l * ' ' l ( l) l * ' '( l) ' transormation o twiss parameters: l l l * l ( s) l * l * Stability...? trace( ) A periodic solution doesn t eist in a lattice built eclusively out o drit spaces.

3.) The Foo-Lattice A magnet structure consisting o ocusing and deocusing quadrupole lenses in alternating order with nothing in between. (Nothing = elements that can be neglected on irst sight: drit, bending magnets, RF structures... and especially eperiments...) Starting point or the calculation: in the middle o a ocusing quadrupole Phase advance per cell μ = 45, calculate the twiss parameters or a periodic solution

Periodic solution o a Foo Cell QF Q QF y L Output o the optics program: Nr Type Length Strength β α ψ β y α y ψ y m /m m /π m /π IP,,,6,, 5,95,, QFH,5 -,54,8,54,4 5,488 -,78,7 Q 3,5,54 5,488 -,78,7,8,54,66 3 QFH 6, -,54,6,,5 5,95,,5 4 IP 6,,,6,,5 5,95,,5 Q X =,5 Q Y =,5. 5* 45

Can we understand, what the optics code is doing? matrices QF cos( K * lq) sin( K * lq) K K sin( K * l ) cos( K * l ) q q, rit l d strength and length o the Foo elements K = +/-.54 m - lq =.5 m ld =.5 m The matri or the complete cell is obtained by multiplication o the element matrices Foo qh * ld * qd * ld * qh Putting the numbers in and multiplying out... Foo.77 8.6.6.77

The transer matri or period gives us all the inormation that we need!.) is the motion stable? trace( Foo ).45 <.) Phase advance per cell () s cos sin sin sin cos( ) sin cos( ) * ( ).77 trace arc cos( * trace( )) 45 3.) hor β-unction 4.) hor α-unction (,) sin( ).6 m (,) cos( ) sin( )

Can we do it a little bit easier? We can: the thin lens approimation atri o a ocusing quadrupole magnet: QF cos( K * l) sin( K * l) K K sin( K * l) cos( K * l) I the ocal length is much larger than the length o the quadrupole magnet, kl Q l Q the transer matri can be aproimated using kl q const, l q

Foo in thin lens approimation l l L/, L Calculate the matri or a hal cell, starting in the middle o a oc. quadrupole: * * halcell Q / l QF / halcell l * * halcell l l l l or the second hal cell set -

Foo in thin lens approimation atri or the complete Foo cell: l l l l * l l l l l l l ( ) l l l ( ) 3 Now we know, that the phase advance is related to the transer matri by 4l l cos trace ( ) *( ) Ater some beer and with a little bit o trigonometric gymnastics cos( ) cos ( ) sin ( / ) sin ( )

we can calculate the phase advance as a unction o the Foo parameter cos( ) sin ( / ) sin( / ) l / L Cell l sin( / ) L Cell 4 Eample: 45-degree Cell L Cell = l QF + l + l Q +l =.5m+.5m+.5m+.5m = 6m / = k*l Q =.5m*.54 m - =.7 m - L Cell sin( / ).45 4 47.8.4m Remember: Eact calculation yields: 45.6m

Stability in a Foo structure Foo l l l ( ) l l l ( ) 3 Stability requires: Trace() SPS Lattice 4ld Trace( ) ~ L cell 4 For stability the ocal length has to be larger than a quarter o the cell length!!

Transormation atri in Terms o the Twiss parameters Transormation o the coordinate vector (, ) in a lattice ρ ( s) '( s) s, s ' General solution o the equation o motion s s ( s) * ( s) *cos( ( s) ) ' ( s) * ( s) ( s)cos( ( s) ) sin( ( s) ) Transormation o the coordinate vector (, ) epressed as a unction o the twiss parameters ( (cos )cos ( sin ) )sin (cos sin sin )

Transer matri or hal a Foo cell: halcell l l ~ ~ l l ~ l L Compare to the twiss parameter orm o ( (cos )cos ( sin ) )sin (cos sin sin ) In the middle o a oc (deoc) quadrupole o the Foo we allways have α =, and the hal cell will lead us rom β ma to β min C S C' S' cos sin sin cos

4.) Scaling o the Twiss Paramerters Solving or β ma and β min and remembering that. l L sin 4 ˆ sin S ' l / C l / sin ˆ ( sin ) L sin! S C ' ˆ l sin ( sin ) L sin! The maimum and minimum values o the β-unction are solely determined by the phase advance and the length o the cell. Longer cells lead to larger β typical shape o a proton bunch in the HERA Foo Cell

Conclusion: * the arc o a storage ring is usually built out o a periodic sequence o single magnet elements eg. Foo sections * a irst guess o the main parameters o the beam in the arc is obtained by the settings o the quadrupole lenses in this section * we can get an estimate o the beam parameters using a selection o rules o thumb Usually the real beam properties will not dier too much rom these estimates and we will have a nice storage ring and a beautiull beam and everybody is happy around.

And then someone comes and spoils it all by saying something stupid like installing a tiny little piece o detector in our machine