LAPLACE TRANSFORMS. 1. Basic transforms

Similar documents
can be viewed as a generalized product, and one for which the product of f and g. That is, does

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

graph of unit step function t

6.8 Laplace Transform: General Formulas

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

EECE 301 Signals & Systems Prof. Mark Fowler

Positive and negative solutions of a boundary value problem for a

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

e t dt e t dt = lim e t dt T (1 e T ) = 1

APPENDIX 2 LAPLACE TRANSFORMS

4.8 Improper Integrals

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Exponential Sawtooth

5.1-The Initial-Value Problems For Ordinary Differential Equations

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Laplace Examples, Inverse, Rational Form

18.03SC Unit 3 Practice Exam and Solutions

Contraction Mapping Principle Approach to Differential Equations

0 for t < 0 1 for t > 0

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Chapter 9 - The Laplace Transform

EE Control Systems LECTURE 2

More on ODEs by Laplace Transforms October 30, 2017

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

CHAPTER 7. Definition and Properties. of Laplace Transforms

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Solutions to Problems from Chapter 2

u(t) Figure 1. Open loop control system

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

CHAPTER 7: SECOND-ORDER CIRCUITS

Network Flows: Introduction & Maximum Flow

6.2 Transforms of Derivatives and Integrals.

Chapter Direct Method of Interpolation

Math 334 Fall 2011 Homework 11 Solutions

EE202 Circuit Theory II

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

REAL ANALYSIS I HOMEWORK 3. Chapter 1

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Solutions to assignment 3

Introduction to Congestion Games

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Mathematics 805 Final Examination Answers

Chapter 7: Inverse-Response Systems

Piecewise-Defined Functions and Periodic Functions

Instrumentation & Process Control

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Algorithmic Discrete Mathematics 6. Exercise Sheet

Graphs III - Network Flow

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

Let. x y. denote a bivariate time series with zero mean.

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson

Physics 240: Worksheet 16 Name

Physics 2A HW #3 Solutions

Math 266, Practice Midterm Exam 2

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13.

1 Solutions to selected problems

Serial : 4LS1_A_EC_Signal & Systems_230918

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations

CSC 373: Algorithm Design and Analysis Lecture 9

The order of reaction is defined as the number of atoms or molecules whose concentration change during the chemical reaction.

International ejournals

Chapter Introduction. 2. Linear Combinations [4.1]

The complex Fourier series has an important limiting form when the period approaches infinity, i.e., T 0. 0 since it is proportional to 1/L, but

Curvature. Institute of Lifelong Learning, University of Delhi pg. 1

3. Renewal Limit Theorems

ENGI 9420 Engineering Analysis Assignment 2 Solutions

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises

5.2 GRAPHICAL VELOCITY ANALYSIS Polygon Method

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Introduction to Laplace Transform Techniques in Circuit Analysis

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

Reminder: Flow Networks

Randomized Perfect Bipartite Matching

Some New Dynamic Inequalities for First Order Linear Dynamic Equations on Time Scales

CONTROL SYSTEMS. Chapter 10 : State Space Response

IX.2 THE FOURIER TRANSFORM

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1

1.0 Electrical Systems

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

( ) ( ) ( ) ( ) ( ) ( y )

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

Graduate Algorithms CS F-18 Flow Networks

Price Discrimination

2. The Laplace Transform

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

Transcription:

LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming hem ino lgebric equion which cn be eily olved. Le f() be dened for. Then we dene he Lplce Trnform of f We lo dene he invere rnform L by F () L(f) f L F e f() d Remrk.. L i n operor on he funcion f. Where f depend on he vrible, F i independen of. Exmple. f(), F () e d e Thu we y h L().. Exponenil. Exmple f() e,, Lineriy of Lplce Trnform L(e ) e e d e ( ) d e ( ) if >. Le f() nd g() be dened for wih rnform F () L(f) nd G() L(g) repecively, nd le nd b be conn. Then L{f() + bg()} F () + bg()

LAPLACE TRANSFORMS Proof. L{f() + bg()} e f() + bg() d e f() d + b F () + bg() e g() d Exmple. coh e + e when > nd + >. We ummrie hi or.. Power of. L( ) L(coh ) {Le + Le } { + } + L(coh ) + where Γ() i he Gmm funcion dened by for >. Inegring by pr: Γ( + ) e d > ( e x x ) dx L( ) Γ() e x x dx e x x dx Γ( + ) + e x x dx eing x x e x + e x x dx Γ() Remrk.. Γ() e x dx e x Le n be poiive ineger. Then Γ(n + ) nγ(n) n(n )Γ(n ) n(n )(n )Γ(n ). n(n )(n )... (3)()()Γ() n!

. BASIC TRANSFORMS 3 Thu for poiive ineger n we hve L( n ) n! n+ We lo hve Γ(/) π. Even hough he Gmm funcion i o fr only dened for poiive vlue of, we cn exend he deniion o (ome) negive vlue of uing he propery Γ( + ) Γ(). For exmple, nd Γ( /) Γ(/) / π Γ( 3/) Γ( /) 3/ 4 π/3 However, Γ() Γ() nd o Γ() / which i unbounded. Similrly Γ(n) i unbounded for ll negive ineger n..3. Trigonomeric funcion. We lredy hve L(e ) nd o nd ince e iω co ω + i in ω we hve nd o, equing rel nd imginry pr, we hve L(e iω ) iω + iω + ω + ω + i ω + ω L(co ω + i in ω) + ω + i ω + ω L(co ω) + ω nd L(in ω) ω + ω.4. Sep funcion. k, < c; f(), c L{f()} c e f() d ke d k k e c e c

4 LAPLACE TRANSFORMS.5. Lplce rnform of derivive. Le f() be dierenible for wih rnform L{f()}. Then L{f ()} e f () d Inegring by pr, wih u e du e d dv f () d v f() Lf () f()e + e f() d Lf() f() Similrly, if f i wice dierenible, hen L{f ()} Lf () f () Lf() f() f () Lf() f() f () nd in generl L{f (n) ()} n L{f()} n f() n f ()... f (n ) () To verify hi, we cn ee for exmple h if f() 3, hen f() f () f () f () 6 Then L{f ()} L(6) 6/ 3 L{f()} f() f () f () 3 L( 3 ) nd o lredy een. Exmple (Iniil Vlue Problem) L( 3 ) 6/ 4 3!/ 4 y + 5y + 6y y(), y () 3 Le Y () L{y()} Then nd rnforming he equion give or L{y ()} Y y() Y L{y ()} Y y() y () Y 3 Y 3 + 5(Y ) + 6Y ( + 5 + 6)Y + 3 which i clled he ubidiry equion. Thi h oluion Y which now mu be invered o obin he oluion y(). + 3 ( + 3)( + )

. BASIC TRANSFORMS 5 Uing pril frcion nd hu Y 9 + 7 + 3 y L (Y ) 9L { + } 7L { + 3 } 9e 7e 3.6. The hifing heorem. To olve more compliced problem we need he following. Theorem.3. (Fir Shifing Theorem.) If L{f()} F () for > γ; hen L{e f()} F ( ) for > γ + Proof. F () e f() d F ( ) e ( ) f() d e e f() d L{e f()} Exmple. L() / F () for >. Thu L(e ) F ( ) /( ) for > een lredy. Exmple. y + y + 5y, y(), y () 4 Trnforming Y + 4 + (Y ) + 5Y ( + + 5)Y Y ( + ) + + ( + ) + ( + ) + From before, we know h L { } co + nd L { } in + nd o, uing he r hifing heorem hi implie nd nd o y L (Y ) e co in L + { ( + ) + } e co L { ( + ) + } e in

6 LAPLACE TRANSFORMS The nlogue of he r hifing heorem for invere rnform i he econd hifing heorem. Thi mke ue of he uni ep funcion:, < u (), Thi i lo omeime wrien u( ) or he Heviide funcion H () or H( ). Theorem.4. (Second hifing heorem) If L (F ()) f(), hen L (e F ()) f(), < f( ), f( )u () Proof. e F () e e z f(z) dz + z e (+z) f(z) dz e f( ) d e f( )u () d Lf( )u () Exmple. L e 3 Since L + in, he econd hifing heorem implie h + Remrk.5. e L 3 in( 3)u 3 () +, < 3 in( 3), 3 L{u ()} e u () d e d e e Remrk.6. The del funcion δ () (lo wrien δ( )) which i innie he poin nd zero elewhere i he r derivive of he uni ep funcion u (). Thu L{δ ()} L{u ()} L{u ()} u () e

. BASIC TRANSFORMS 7.7. Trnform of inegrl. Theorem.7. If f h rnform L(f) F () hen Proof. Le g() L f F () f. Then g () f() nd g() nd o L{f()} L{g ()} L{g()} g() L{g()} nd o L{g()} L f L{f()} Exmple. Inver nd ( + ). L L ( + ) ( + ) L ( + ) L e + L e z dz e ( + ) L ( e z ) dz ( + ) L ( e ) ( + ) z + e z + e We cn ue hee reul o olve more compliced iniil vlue problem, which could no be olved wihou he ue of rnform: Exmple. Repone of n undmped yem o ingle qure wve. y + y r() y() y (), < r(), > Thu r() u () nd L{r()} e. Seing Y L(y) nd rnforming he equion we obin Y + Y ( e )

8 LAPLACE TRANSFORMS nd o To nd y we r inver nd o Y L + ( + ) e in We e f() L ( in z dz + ) co z ( co ) ( co ) nd herefore, uing he econd hifing heorem, L e ( u ()f( ) + ) co ( ) u () Thu For <, u () nd o y co co ( ) u () y co where, for, u () nd o y co ( ) co Remrk.8. Ined of uing inegrion, we could hve ued pril frcion: or ( + ) A + B + C + A( + ) + (B + C) For, nd o A /. Equing coecien of power of give : A + B B / : C Thu nd o before. ( + ) + L ( + ) co

. BASIC TRANSFORMS 9 Exmple. RC circui Ri() + i v() C, < where v() V, < < b, > b Th i, v() V u () u b () If we e I() Li() hen he rnformed equion i nd o RI + I C V e e b I F ()(e e b ) where F () V R + /C L V L V /R R + /C + /RC V R L + /RC Thu V R e /RC i() L I() L e F () L e b F () V { } e ( )/RC u () e ( b)/rc u b () R So, for <, u u b nd o i(). For < < b u bu u b ill nd o i() V R e/rc e /RC nd nlly, for > b, u u b nd hu V e /RC e b/rc e /RC R.8. Periodic funcion. A funcion f() h period T if f( + T ) f() for ll. For exmple, in nd co hve period π. We lredy know he rnform of hee funcion; bu o rnform more generl (including diconinuou) periodic funcion we do he following: Lf() T... + nt e f() d T e f() d + (n )T T e f() d +... 3T e f() d + e f() d +... T Seing u + T in he r inegrl, u + T in he econd, nd o on, wih u + (n )T in he nh, we obin

LAPLACE TRANSFORMS Lf() T... + T T e u f(u) du + e (u+(n )T ) f(u) du +... + e T + e T +... T e u f(u) du T e (u+t ) f(u) du + e (u+t ) f(u) du+ (uing he periodiciy of f). Noing h he erm in qure brcke i geomeric erie, we cn um i o obin nlly Exmple. Periodic qure wve for n,,,..., which h period. Lf() T e T e f() d k, n < < (n + ) f() k, (n + ) < < (n + ) k -k Figure. f() Lf() e ke d k e e + e ( e ) k k e e + e e + e ( k nh ) ke d.9. Diereniion of rnform. If F () e f() d hen Hence, Lf() F () F () Exmple. Find he invere rnform of ( + ) e f() d Lf()

Noing h L{in } nd o Exmple. +, we hve. BASIC TRANSFORMS L in L ( + ) ( + ) in Diereniing: F () ln + ln( + ) ln( ) d d L F () e e ln + + inh Le e Linh.. Inegrion of rnform. From hi rule for diereniion of rnform, we cn obin he following rule for inegrion: f() Theorem.9. If F () Lf() nd lim + Proof. Exmple. We know h L{in } F (u) du exi, hen f() L F f() e u f() d du e u du d f() e d L in nd lim. Thu + f() L{ in } u + du co u co A hi ge we cn ummrie ll he rnform which hve been eblihed in he following ble.

LAPLACE TRANSFORMS Tble. Tble of Lplce Trnform f() F () k k n n! n+ α Γ(α + ) α+ e in + co + inh coh e b in b ( ) + b e co b ( ) + b e n n! ( ) n+ e f() F ( ) u ()f( ) in co f() n f() f () e F () ( + ) ( + ) F () ( ) n F (n) () F () f() f () F () f() f () f (n) () n F () n f()... f (n ) () F () f(u) du f() F (u) du.. Syem of liner dierenil equion. Thee preen no pecil diculie for Lplce rnform. The rnformed yem of liner lgebric equion i olved nd hen invered. Exmple. A circui i decribed by he yem of wo equion: L i + i R Mi + v() L i + i R Mi

If L L, M nd R R 3, hen hi become i + 3i i + v() i + 3i i Auming i () i (), he rnformed equion i hen. BASIC TRANSFORMS 3 or Equion nd o I I + 3I I + V () I + 3I I ( + 3)I I V () () I + ( + 3I ) () ( + 3) I V () V () ( + 3) V () 3( + )( + 3) Conider now he ce where v() E in for ome conn E. Then V () E nd o + I Uing pril frcion: or Then 4A nd o A /4 3 3 B B 3/ E 3 ( + )( + 3)( + ) ( + )( + 3)( + ) A + + B + 3 + C + D + A( + 3)( + ) + B( + )( + ) + (C + D)( + )( + 3) Equing he coecien of 3 we hve: A + B + C nd o C A B (5 3)/ / nd nlly eing we obin 3A + B + 3D or D /3(3A + B) ( ) 5 + 3 /5 3 Thu I E 5 6 + + 3 + 3 + + + 4 + nd invering we obin i E 5e + 3e 3 + co + 4 in 6 Similrly, nd I + 3 I E + 3 3 ( + )( + 3)( + ) E 5 6 + + 3 + 3 8 + + 4 + i E 5e + 3e 3 8 co + 4 in 6

4 LAPLACE TRANSFORMS. Convoluion The convoluion of wo funcion f() nd g(), denoed f g i dened by (f g)() f(u)g( u) du Convoluion h mny of he properie of produc, bu no ll. For exmple, i i commuive: f g g f ince (f g)() f(u)g( u) du f( v)g(v) ( dv) However, noe h, ince Alo, f f cn be negive, e.g., if f() co nd wih v u du g(v)f( v) dv (g f)() co co Thi i negive, for exmple, 3π/. co u co( u) du co + co(u ) du u co + in(u ) { co + in } in( ) co + in The vlue of convoluion in he conex of Lplce rnform rie from he following: Theorem.. If f() nd g() hve Lplce rnform F () nd G() repecively, hen Proof. F ()G() L(f g)() F ()G() e u f(u) du e v f(v) dv e (u+v) f(u)g(v) dv du Now, le u + v nd o d dv (in he inner inegrl). Then F ()G() u e f(u)g( u) d du e f(u)g( u) du d (wiching he order of inegrion by king noe of he re of inegrion) Thu

. CONVOLUTION 5 F ()G()) e L(f g)() e (f g)() d f(u)g( u) du d Exmple. f() g() co F () G() + nd o F ()G() ( + ) Thu L ( + ) co co co + in Noe h we cn rrive hi reul in n lernive fhion by uing Thu L co d d + ( + ) + () ( + ) ( + ) L ( + ) L ( ) + ( + ) ( + ) L ( + ) + + co + in ( before).. Iniil vlue problem. Convoluion cn obviouly be ued n lernive wy of olving dierenil equion. One dvnge cn be een in he following: Exmple. Trnforming nd hu or nd hu y + ω y h() y() A, y () B Y Y A B + ω Y H() ( + ω )Y H() + A + B H() + ω + A + ω + B + ω y ω in ω h() + A co ω + B in ω ω Thu we cn obin oluion o problem in hi generl form uing convoluion wihou knowing h() nd if we do know h() we cn ue hi formul o clcule y wihou hving o rnform r.

6 LAPLACE TRANSFORMS.. Inegrl equion. Convoluion cn lo be ued ogeher wih Lplce rnform o olve ome inegrl equion very imply. Exmple. Trnforming y() in + y(u) in ( u) du nd hu y() in. Y + 4 + + 4 ( + 4 Y Y ) + + + 4 + Y +