The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Similar documents
News from High-Energy Cosmic Rays and Neutrinos. Michael Kachelrieß NTNU, Trondheim

Charged Cosmic Rays and Neutrinos

Galactic Neutrinos. Michael Kachelrieß. NTNU, Trondheim

The 2 Icecube PeV events [A. ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran / 23

Cosmic Rays, Photons and Neutrinos

Multi-Messenger Astonomy with Cen A?

arxiv: v2 [astro-ph.he] 5 Aug 2014

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN

arxiv: v1 [astro-ph.he] 8 Apr 2015

Ultra-High Energy Cosmic Rays (III)

Air Shower Measurements from PeV to EeV

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

TeV Cosmic Ray Anisotropies at Various Angular Scales

High-energy cosmic rays

Latest results and perspectives of the KASCADE-Grande EAS facility

Seeing the moon shadow in CRs

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range

Cosmic-ray energy spectrum around the knee

Propagation of TeV PeV Cosmic Rays in the Galactic Magnetic Field

Questions 1pc = 3 ly = km

ON PROBABLE CONTRIBUTION OF NEARBY SOURCES TO ANISOTROPY AND SPECTRUM OF COSMIC RAYS AT TEV-PEV-ENERGIES

Antimatter from Supernova Remnants

Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds

PROPAGATION OF UHE HEAVY NUCLEI IN THE GALACTIC MAGNETIC FIELD

From the Knee to the toes: The challenge of cosmic-ray composition

Cosmic Rays in large air-shower detectors

Recent Results from the KASCADE-Grande Data Analysis

Cosmic rays in the knee energy range

Astroparticle Physics. Michael Kachelrieß NTNU, Trondheim

UHECR: Acceleration and Propagation

The air-shower experiment KASCADE-Grande

A few grams of matter in a bright world

On the GCR/EGCR transition and UHECR origin

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G

Ultra-High Energy Cosmic Rays: Results, and Prospects

Mass composition studies around the knee with the Tunka-133 array. Epimakhov Sergey for the Tunka-133 collaboration

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

Cosmic Ray Astronomy. Qingling Ni

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1

Measurement of the Cosmic Ray Energy Spectrum with ARGO-YBJ

An Auger Observatory View of Centaurus A

arxiv: v1 [astro-ph.he] 28 Jan 2013

High Energy Cosmic Ray Interactions

Ultra- high energy cosmic rays

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

Mass Composition Study at the Pierre Auger Observatory

Ultrahigh Energy cosmic rays II

Interpretation of cosmic ray spectrum above the knee measured by the Tunka-133 experiment

Evidence of Stochastic Acceleration of Secondary. Antiprotons by Supernova Remnants! Ilias Cholis, 08/09/2017

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

Ultra High Energy Cosmic Rays: Observations and Analysis

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Ultrahigh Energy Cosmic Rays propagation II

Cosmic Rays: high/low energy connections

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Measurement of the cosmic ray all-particle and light-component energy spectra with the ARGO- YBJ experiment

Air showers in IceCube. Cosmic rays Neutrinos Gamma rays

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

UHECR autocorrelation function after Auger

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

Possible Multi-Messenger Sources of Gravitational Waves and Particle Radiation

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux

Measurement of air shower maxima and p-air cross section with the Telescope Array

Cosmic Rays in large air-shower detectors

Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons

OVERVIEW OF THE RESULTS

Cosmic Rays in the Galaxy

THE PIERRE AUGER OBSERVATORY: COSMIC ACCELERATORS AND THE MOST ENERGETIC PARTICLES IN THE UNIVERSE

Cosmic rays in the local interstellar medium

Cosmic Rays 1. Introduction

UHECRs sources and the Auger data

Primary Cosmic Rays : what are we learning from AMS

KASCADE-Grande energy spectrum of cosmic rays interpreted with post-lhc hadronic interaction models

Cosmogenic neutrinos II

Looking Beyond the Standard Model with Energetic Cosmic Particles

Cosmic Ray Physics with the Alpha Magnetic Spectrometer

arxiv: v2 [astro-ph.he] 2 Mar 2012

Lower bound on the extragalactic magnetic field

The Most Energetic Particles in Nature

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

arxiv: v2 [astro-ph.he] 30 May 2014

Cosmic Ray Composition and Spectra : Progress since Aspen 05. Gaurang B. Yodh UC Irvine

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Dark Matter in the Universe

Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

Extremely High Energy Neutrinos

Lessons 19 and 20. Detection of C.R. with energy > TeV Study of the C.R. isotropy/anisotropy Ground based detectors:

Investigation on mass composition of UHE cosmic rays using CRPropa 2.0

The Pierre Auger Observatory Status - First Results - Plans

The KASCADE-Grande Experiment

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

ULTRA-HIGH ENERGY COSMIC RAYS

Sep. 13, JPS meeting

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

Physics and Astroparticle Physics A. A

Transcription:

The Escape Model Michael Kachelrieß NTNU, Trondheim [] with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Introduction Outline Outline of the talk 1 Introduction Results on Composition 2 Escape model Fluxes of groups of CR nuclei & knee Transition to extragalactic CRs Exgal. protons, γ s and ν s as CR secondaries 3 A recent nearby SN? Anisotropy Antimatter fluxes 4 Conclusions Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 2 / 30

Introduction Outline Outline of the talk 1 Introduction Results on Composition 2 Escape model Fluxes of groups of CR nuclei & knee Transition to extragalactic CRs Exgal. protons, γ s and ν s as CR secondaries 3 A recent nearby SN? Anisotropy Antimatter fluxes 4 Conclusions Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 2 / 30

Introduction Outline Outline of the talk 1 Introduction Results on Composition 2 Escape model Fluxes of groups of CR nuclei & knee Transition to extragalactic CRs Exgal. protons, γ s and ν s as CR secondaries 3 A recent nearby SN? Anisotropy Antimatter fluxes 4 Conclusions Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 2 / 30

Introduction Composition Composition of Galactic CRs: traditional view [Gaisser, Stanev, Tilav 13 ] sr -1 s -1 ] 4 3 Proton_total He_total C_total O_total Fe_total Z=53 group Z=80 group dn/de [GeV 2.6 E 1.6 m -2 2 1 3 Pamela Proton Pamela He CreamII Proton CreamII He CreamII C CreamII O CreamII Mg CreamII Si CreamII Fe 4 5 6 Primary Energy, E [GeV] 7 8 9 11 Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 3 / 30

Introduction Composition Composition of Galactic CRs: KASCADE-Grande 2013 ) 1.5 sr -1 s -1 ev -2 / (m 2.5 E 17 16 EAS-TOP (Astrop.Phys.(1999)1) Tibet-III, QGSJET 01 (ApJ678(2008)1165) GAMMA (ICRC 2011) IceTop (arxiv:1202.3039v1) TUNKA-133 (ICRC 2011) Yakutsk (NewJ.Phys11(2008)065008) KASCADE-Grande, QGSJET II (Astrop.Phys.36(2012)183) Akeno (J.Phys.G18(1992)423) AGASA (ICRC 2003) HiResI (PRL0(2008)11) HiResII (PRL0(2008)11) AUGER (arxiv:17:4809) AUGER AMIGA infill (ICRC 2011) diff. flux dj/de 15 KASCADE, all-part., QGSJET II (see Appendix A) KASCADE, light (p), QGSJET II (see Appendix A) KASCADE, medium (He+C+Si), QGSJET II (see Appendix A) KASCADE, heavy (Fe), QGSJET II (see Appendix A) KASCADE-Grande, all-part., QGSJET II (this work) KASCADE-Grande, light (p), QGSJET II (this work) KASCADE-Grande, medium (He+C+Si), QGSJET II (this work) KASCADE-Grande, heavy (Fe), QGSJET II (this work) 15 16 17 primary energy E/eV 18 Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 3 / 30

Introduction Composition Composition of Galactic CRs: Auger [arxiv:1409.5083 ] 600 Sibyll 2.1 Sibyll 2.1 Sibyll 2.1 Fe N 500 He p Auger 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p = 0.013 p = 0.235 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 QGSJET II-04 QGSJET II-04 QGSJET II-04 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p < -3 p = 0.326 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 EPOS-LHC EPOS-LHC EPOS-LHC 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p = 0.776 p = 0.769 0 0 500 600 700 800 900 00 X max [g/cm 2 ] 500 600 700 800 900 00 X max [g/cm 2 ] 500 600 700 800 900 00 X max [g/cm 2 ] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 3 / 30

Introduction Composition Composition of Galactic CRs: Auger [arxiv:1409.5083 ] 600 Sibyll 2.1 Sibyll 2.1 Sibyll 2.1 Fe N 500 He p Auger 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p = 0.013 p = 0.235 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 QGSJET II-04 QGSJET II-04 QGSJET II-04 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p < -3 p = 0.326 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 EPOS-LHC EPOS-LHC EPOS-LHC 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 composition 300 6 17 5 18 ev consistent with N 200 p < -4 p = 0.776 p = 0.769 50% 0 p, 50% He+N, < 20%Fe 0 500 600 700 800 900 00 X max [g/cm 2 ] 500 600 700 800 900 00 X max [g/cm 2 ] 500 600 700 800 900 00 X max [g/cm 2 ] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 3 / 30

Introduction Composition Composition of Galactic CRs: 600 Sibyll 2.1 Sibyll 2.1 Sibyll 2.1 Fe N 500 He p Auger 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p = 0.013 p = 0.235 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 QGSJET II-04 QGSJET II-04 QGSJET II-04 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p < -3 p = 0.326 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 EPOS-LHC EPOS-LHC EPOS-LHC 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 composition 300 6 17 5 18 ev consistent with N p < -4 p = 0.776 p = 0.769 200 50% 0 p, 50% He+N, < 20%Fe 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 early transition X max [g/cm 2 ] from Galactic X max [g/cm to 2 ] extragalactic X max CRs [g/cm 2 ] 900 00 Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 3 / 30

Introduction Composition Transition to extragalactic CRs anisotropy limits dipole quadrupole Upper Limit - Dipole Amplitude 1-1 -2 Z=1 Z=26 1 E [EeV] Upper Limit - Amplitude λ + 1-1 -2 Z=1 Z=26 1 E [EeV] dominant light Galactic composition around E = 18 ev excluded [Giacinti, MK, Semikoz, Sigl 12, PAO 13 ] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 4 / 30

Knee explanations Cosmic Ray Knee: steepening γ 0.4 at few 15 ev. ) 1.5 s -1 sr -1 ev -2 J(E) (m 19 18 17 2 RHIC (p-p) HERA (γ-p) Equivalent c.m. energy 3 Tevatron (p-p) 4 7 TeV 14 TeV LHC (p-p) s pp (GeV) 5 HiRes-MIA HiRes I HiRes II Auger 2009 6 2.5 Scaled flux E 16 15 14 ATIC PROTON RUNJOB KASCADE (QGSJET 01) KASCADE (SIBYLL 2.1) KASCADE-Grande 2009 Tibet ASg (SIBYLL 2.1) 13 13 14 15 16 17 18 19 Energy 20 (ev/particle) 21 Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 5 / 30

Knee explanations Cosmic Ray Knee: 3 explanations. ) 1.5 19 2 Equivalent c.m. energy 3 4 s pp (GeV) 5 6 s -1 sr -1 ev -2 J(E) (m 18 17 RHIC (p-p) HERA (γ-p) Tevatron (p-p) 7 TeV 14 TeV LHC (p-p) HiRes-MIA HiRes I HiRes II Auger 2009 2.5 Scaled flux E 16 15 ATIC KASCADE (QGSJET 01) 14 PROTON RUNJOB KASCADE (SIBYLL 2.1) KASCADE-Grande 2009 Tibet ASg (SIBYLL 2.1) 13 13 14 15 16 17 18 19 Energy 20 21 (ev/particle) change of interactions at multi-tev energies: excluded by LHC Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 6 / 30

Knee explanations Cosmic Ray Knee: 3 explanations. change of interactions at multi-tev energies: excluded by LHC change of propagation at R L l coh or E c ZeB l coh : change in diffusion from D(E) E 1/3 to Hall diffusion D(E) E small-angle scattering D(E) E 2 something intermediate? unavoidable effect, but for B few µg and l coh 30 pc at too high energy: E c /Z 15 B l c µg pc Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 6 / 30

Knee explanations Cosmic Ray Knee: 3 explanations maximal rigidity of dominant CR sources e.g. Hillas model E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] 000 00 0 p He C O Fe total 11 12 13 14 15 16 17 18 19 20 E/eV Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 7 / 30

Knee explanations Cosmic Ray Knee: 3 explanations maximal rigidity of dominant CR sources e.g. Hillas model E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] 000 00 0 p He C O Fe total 11 12 13 14 15 16 17 18 19 20 E/eV i = 1,...,3 types of CR sources, with slopes α A,i, rel. fractions f A,i Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 7 / 30

Knee explanations Cosmic Ray Knee: 3 explanations maximal rigidity of dominant CR sources e.g. Hillas model E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] 000 00 0 p He C O Fe total 11 12 13 14 15 16 17 18 19 20 E/eV i = 1,...,3 types of CR sources, with slopes α A,i, rel. fractions f A,i no reliable estimate of E max,i, α A,i, and f A,i fit of many-parameter model to two observables: I tot and ln(a) Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 7 / 30

Knee explanations Cosmic Ray Knee: 3 explanations maximal energy: Gaisser, Stanev & Tilav version [1303.3665 ] 4 3.5 3 2.5 <lna> 2 1.5 1 IC40/IT40 Kascade Tunka-133 HiResMia HiRes Auger 0.5 0 6 TA H4a H3a Global Fit Global Fit with Population 4 7 8 Primary Energy, E [GeV] 9 11 Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 8 / 30

Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 9 / 30

Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 9 / 30

Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. slope of power spectrum P(k) k α determines energy dependence of diffusion coefficient D(E) E β as β = 2 α: Kolmogorov α = 5/3 β = 1/3 Kraichnan α = 3/2 β = 1/2 Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 9 / 30

Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. slope of power spectrum P(k) k α determines energy dependence of diffusion coefficient D(E) E β as β = 2 α: Kolmogorov α = 5/3 β = 1/3 Kraichnan α = 3/2 β = 1/2 observed energy spectrum of primaries: injection: dn/de E δ observed: dn/de E δ β δ and β are degenerated Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 9 / 30

Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. slope of power spectrum P(k) k α determines energy dependence of diffusion coefficient D(E) E β as β = 2 α: Kolmogorov α = 5/3 β = 1/3 Kraichnan α = 3/2 β = 1/2 observed energy spectrum of primaries: injection: dn/de E δ observed: dn/de E δ β δ and β are degenerated anisotropy δ = 3D ij i ln(n) Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 9 / 30

Knee explanations Our approach: use model for Galactic magnetic field calculate trajectories x(t) via F L = qv B. Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 / 30

Knee explanations Our approach: use model for Galactic magnetic field calculate trajectories x(t) via F L = qv B. as preparation, let s calculate diffusion tensor in pure, isotropic turbulent magnetic field Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 / 30

Knee explanations Eigenvalues of D ij = x i x j /(2t) for E = 15 ev D(1PeV) (cm 2 /s) 1e+29 1e+28 d 3 d 2 d 1D 0.1 1 0 Time (kyr) Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 11 / 30

Knee explanations Eigenvalues of D ij = x i x j /(2t) for E = 15 ev D(1PeV) (cm 2 /s) 1e+29 1e+28 d 3 d 2 d 1D 0.1 1 0 Time (kyr) asymptotic value is smaller than extrapolated Galprop value [Giacinti, MK, Semikoz ( 12) ] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 12 / 30

Knee explanations Knee from Cosmic Ray Escape l coh and regular field B(x) fixed from observations LOFAR: lcoh < pc in disc determine magnitude of random B rms (x) from grammage X(E) Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 13 / 30

Knee explanations Knee from Cosmic Ray Escape l coh and regular field B(x) fixed from observations LOFAR: lcoh < pc in disc determine magnitude of random B rms (x) from grammage X(E) X(E) in g/cm 2 1 0.1 β=1, L=pc β=0.1, L=pc 0.01 β=1/8, L=25pc δ=1/3 AMS-02 (a) AMS-02 (b) 0.001 Jones 11 12 13 14 15 16 17 E/Z in ev Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 13 / 30

Knee explanations Knee from Cosmic Ray Escape l coh and regular field B(x) fixed from observations LOFAR: lcoh < pc in disc determine magnitude of random B rms (x) from grammage X(E) X(E) in g/cm 2 1 0.1 β=1, L=pc β=0.1, L=pc 0.01 β=1/8, L=25pc δ=1/3 AMS-02 (a) AMS-02 (b) Jones 0.001 11 12 13 14 15 16 17 E/Z in ev prefers weak random fields fluxes I A (E) of all isotopes fixed by low-energy data Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 13 / 30

Knee explanations Galactic CRs: KASCADE-Grande 2013 ) 1.5 sr -1 s -1 ev -2 / (m 17 16 EAS-TOP (Astrop.Phys.(1999)1) Tibet-III, QGSJET 01 (ApJ678(2008)1165) GAMMA (ICRC 2011) IceTop (arxiv:1202.3039v1) TUNKA-133 (ICRC 2011) Yakutsk (NewJ.Phys11(2008)065008) KASCADE-Grande, QGSJET II (Astrop.Phys.36(2012)183) Akeno (J.Phys.G18(1992)423) AGASA (ICRC 2003) HiResI (PRL0(2008)11) HiResII (PRL0(2008)11) AUGER (arxiv:17:4809) AUGER AMIGA infill (ICRC 2011) diff. flux dj/de E 2.5 15 KASCADE, all-part., QGSJET II (see Appendix A) KASCADE, light (p), QGSJET II (see Appendix A) KASCADE, medium (He+C+Si), QGSJET II (see Appendix A) KASCADE, heavy (Fe), QGSJET II (see Appendix A) KASCADE-Grande, all-part., QGSJET II (this work) KASCADE-Grande, light (p), QGSJET II (this work) KASCADE-Grande, medium (He+C+Si), QGSJET II (this work) KASCADE-Grande, heavy (Fe), QGSJET II (this work) 15 16 17 primary energy E/eV 18 Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 14 / 30

Knee explanations Knee from Cosmic Ray Escape: proton energy spectra 13 E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] 12 11 KASCADE 2013 KASCADE Grande CREAM-2011 PAMELA 2011 2.41 5 pc 130 2.41 1e+ 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 E [ev] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 15 / 30

Knee explanations Knee from Cosmic Ray Escape: He energy spectra 13 E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] 12 11 PAMELA 2011 CREAM-2011 KASCADE Grande KASCADE 2013 He 5 pc 2.55 130 2.55 1e+ 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 E [ev] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 15 / 30

Knee explanations Knee from Cosmic Ray Escape: CNO energy spectra 13 E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] 12 11 KASCADE Grande CNO KASCADE 2013 CREAM C+O 9 CNO 25 pc 2.25 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 1e+18 1e+19 E [ev] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 15 / 30

Knee explanations Knee from Cosmic Ray Escape: total energy spectra E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] 13 12 11 Tibet KASCADE Grande Auger 2013 P He CNO Si Fe total 14 15 16 17 18 19 20 E [ev] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 15 / 30

Knee explanations Knee from Cosmic Ray Escape: ln(a) ln(a) 4 3.5 3 2.5 2 1.5 1 0.5 KASCADE-Grande KASCADE IceCube TUNKA Auger 0% exgal p p/fe exgal. mix 0 1e+15 1e+16 1e+17 1e+18 1e+19 1e+20 E/eV Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 16 / 30

Knee explanations Knee from Cosmic Ray Escape: ln(a) ln(a) 4 3.5 3 2.5 2 1.5 1 0.5 KASCADE-Grande KASCADE IceCube TUNKA Auger 0% exgal p p/fe exgal. mix 0 1e+15 1e+16 1e+17 1e+18 1e+19 1e+20 E/eV exgal. mix: 60% p, 25% He, 15% N Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 16 / 30

Knee explanations Knee from Cosmic Ray Escape: dipole anisotropy -2-3 δ -4 1 PeV all data IceCube 2013 fit 1 SN 0 TeV Galactic total -5 Galactic 11 12 13 14 15 16 17 18 E [ev] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 17 / 30

Knee explanations Knee from Cosmic Ray Escape: dipole anisotropy Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 17 / 30

Escape model Exgal. protons, γ s and ν s Extragalactic proton flux in escape model: 6 E 2 F(E) [ev/cm 2 /s/sr] 5 4 3 2 1 KASCADE 2013 0 KASCADE Grande KASCADE Grande EG P 25 pc with Auger limit -1 Auger 2013 Auger 2013 Protons -2??? 15 16 17 18 19 20 E [ev] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 18 / 30

Escape model Exgal. protons, γ s and ν s Extragalactic proton flux in escape model: 6 E 2 F(E) [ev/cm 2 /s/sr] 5 4 3 2 1 KASCADE 2013 0 KASCADE Grande KASCADE Grande EG P 25 pc with Auger limit -1 Auger 2013 Auger 2013 Protons??? -2 15 16 17 18 19 20 what are the sources? E [ev] testable via γ-ray and neutrinos? Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 18 / 30

Escape model Exgal. protons, γ s and ν s Normal and starburst galaxies: assume E 2.2 source spectrum starburst: B 0B MW rescale grammage and E max fix Q CR via SN/star formation rate vary gas density Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 19 / 30

Escape model Exgal. protons, γ s and ν s Normal and starburst galaxies: 00 ν gal (98%) je 2, ev cm -2 s -1 sr -1 0 p γ 1 ν EG KASCADE 2013 KASCADE Grande EG Auger 2013 Protons 0.1 8 12 14 16 18 20 E, ev Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 20 / 30

Escape model Exgal. protons, γ s and ν s Normal and starburst galaxies: 00 ν gal (98%) je 2, ev cm -2 s -1 sr -1 0 p γ 1 ν EG KASCADE 2013 KASCADE Grande EG Auger 2013 Protons 0.1 8 12 14 16 18 20 E, ev can not explain exgal. protons sources are thick can not be dominant sources of both EGRB and neutrinos Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 20 / 30

Escape model Exgal. protons, γ s and ν s Extragalactic proton flux in escape model: α p = 2.2 requires late redshift evolution: 20 N c (z)/n c (0) BL Lacs ρ. SNII (z)/ρ. SNII (0) 1 0.4 0 1 2 3 4 5 6 z Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 21 / 30

Escape model Exgal. protons, γ s and ν s Extragalactic proton flux in escape model: α p = 2.2 requires late redshift evolution: 20 N c (z)/n c (0) BL Lacs ρ. SNII (z)/ρ. SNII (0) 1 0.4 0 1 2 3 4 5 6 z BL Lacs/FR-I are promising sources Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 21 / 30

Escape model Exgal. protons, γ s and ν s Extragalactic proton flux in escape model: α p = 2.2 requires late redshift evolution: BL Lacs/FR-I are promising sources E 2 F(E) [ev/cm 2 /s/sr] 6 5 4 3 2 1 KASCADE 2013 0 KASCADE Grande KASCADE Grande EG P 25 pc with Auger limit -1 Auger 2013 Auger 2013 Protons BL Lacs -2 15 16 17 18 19 20 E [ev] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 21 / 30

Escape model Exgal. protons, γ s and ν s Diffuse fluxes from BL Lacs α = 2.17 and E τ = 3 11 ev 00 ν gal (75%) je 2, ev cm -2 s -1 sr -1 0 p γ 1 ν EG KASCADE 2013 KASCADE Grande EG Auger 2013 Protons 0.1 8 12 14 16 18 20 E, ev Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 22 / 30

Escape model Exgal. protons, γ s and ν s Diffuse fluxes from BL Lacs α = 2.1 and E τ = 3 11 ev je 2, ev cm -2 s -1 sr -1 00 0 ν gal (37%) p γ 1 ν EG KASCADE 2013 KASCADE Grande EG Auger 2013 Protons 0.1 8 12 14 16 18 20 E, ev Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 22 / 30

Escape model Exgal. protons, γ s and ν s Diffuse fluxes from BL Lacs α = 2.1 and E τ = 3 14 ev 00 ν gal (85%) je 2, ev cm -2 s -1 sr -1 0 p γ 1 ν EG KASCADE 2013 KASCADE Grande EG Auger 2013 Protons 0.1 8 12 14 16 18 20 E, ev Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 22 / 30

Escape model Exgal. protons, γ s and ν s Diffuse fluxes from BL Lacs 00 ν gal (75%) je 2, ev cm -2 s -1 sr -1 0 p γ 1 ν EG KASCADE 2013 KASCADE Grande EG Auger 2013 Protons 0.1 8 12 14 16 18 20 E, ev BL Lac s can explain CR proton flux EGRB and large fraction of IceCube ν from pp interactions Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 22 / 30

Local source Anisotropies Anisotropy of a single source if only turbulent field: diffusion = random walk = free quantum particle number density is Gaussian with σ 2 = 4DT δ = 3D n c n = 3R 2T what happens for general fields? Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 23 / 30

Local source Anisotropies Anisotropy of a single source if only turbulent field: diffusion = random walk = free quantum particle number density is Gaussian with σ 2 = 4DT δ = 3D n c n = 3R 2T what happens for general fields? Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 23 / 30

Local source Anisotropies Anisotropy of a single source if only turbulent field: diffusion = random walk = free quantum particle number density is Gaussian with σ 2 = 4DT δ = 3D n c n = 3R 2T what happens for general fields? Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 23 / 30

Local source Anisotropies Anisotropy of a single source: only turbulent field B 0 = 0 G 3/2 50 pc / ct 1 kpc 0.1 Anisotropy (R / 50 pc) -1 0.01 0.1 kpc 00 000 0000 Years [Savchenko, MK, Semikoz 15 ] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 24 / 30

Local source Anisotropies Anisotropy of a single source: plus regular B 0 = 1 G 3/2 50 pc / ct 1 kpc 0.1 Anisotropy (R / 50 pc) -1 0.01 0.1 kpc 00 000 0000 Years [Savchenko, MK, Semikoz 15 ] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 24 / 30

Local source Anisotropies Anisotropy of a single source: B 0 = 1 G 3/2 50 pc / ct 1 kpc 0.1 Anisotropy (R / 50 pc) -1 0.01 0.1 kpc 00 000 0000 Years regular field changes n(x), but keeps it Gaussian no change in δ Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 24 / 30

Local source Anisotropies Anisotropy of a single source: -3 δ -4 1 PeV all data IceCube 2013 0 TeV fit 1 SN Galactic -5 total 11 12 13 14 15 16 [Savchenko, MK, Semikoz 15 ] E [ev] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 25 / 30

Local source Antimatter fluxes Single source: other signatures 2 Myr SN explains anomalous 60 Fe sediments [Ellis+ 96 ] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 26 / 30

Local source Antimatter fluxes Single source: other signatures 2 Myr SN explains anomalous 60 Fe sediments [Ellis+ 96 ] secondaries: p diffuse as p leads to constant p/p ratio p/p ratio fixed by source age p flux is predicted e + flux is predicted relative ratio of p and e + depends only on their Z factors Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 26 / 30

Local source Antimatter fluxes Single source: other signatures 2 Myr SN explains anomalous 60 Fe sediments [Ellis+ 96 ] secondaries: p diffuse as p leads to constant p/p ratio p/p ratio fixed by source age p flux is predicted e + flux is predicted relative ratio of p and e + depends only on their Z factors may responsible for different slopes of local p and nuclei fluxes Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 26 / 30

Local source Antimatter fluxes Single source: proton flux [MK, Neronov, Semikoz 15 ] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 27 / 30

Local source Antimatter fluxes Single source: positrons [MK, Neronov, Semikoz 15 ] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 28 / 30

Local source Antimatter fluxes Single source: antiprotons [MK, Neronov, Semikoz 15 ] Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 28 / 30

Conclusions Conclusions I Knee due to CR escape recovery of fluxes as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 18 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 29 / 30

Conclusions Conclusions I Knee due to CR escape recovery of fluxes as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 18 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 29 / 30

Conclusions Conclusions I Knee due to CR escape recovery of fluxes as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 18 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 29 / 30

Conclusions Conclusions I Knee due to CR escape recovery of fluxes as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 18 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 29 / 30

Conclusions Conclusions II 1 Single source: anisotropy dipole formula δ = 3R/2T holds universally in quasi-gaussian regime plateau of δ points to dominance of single source 2 Single source: antimatter consistent explanation of p, p and e + fluxes consistent with 60 Fe and δ 3 local geometry of GMF is important Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 30 / 30

Conclusions Conclusions II 1 Single source: anisotropy dipole formula δ = 3R/2T holds universally in quasi-gaussian regime plateau of δ points to dominance of single source 2 Single source: antimatter consistent explanation of p, p and e + fluxes consistent with 60 Fe and δ 3 local geometry of GMF is important Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 30 / 30

Conclusions Conclusions II 1 Single source: anisotropy dipole formula δ = 3R/2T holds universally in quasi-gaussian regime plateau of δ points to dominance of single source 2 Single source: antimatter consistent explanation of p, p and e + fluxes consistent with 60 Fe and δ 3 local geometry of GMF is important Michael Kachelrieß (NTNU Trondheim) Escape Model DESY Zeuthen, 04.03.16 30 / 30