Ultrafast Laser Physics

Similar documents
Ultrafast Laser Physics

Linear pulse propagation

The Generation of Ultrashort Laser Pulses II

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

Ultrafast laser oscillators: perspectives from past to futures. New frontiers in all-solid-state lasers: High average power High pulse repetition rate

The structure of laser pulses

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

Multipulse Operation and Limits of the Kerr-Lens Mode-Locking Stability

The Generation of Ultrashort Laser Pulses

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Dispersion and how to control it

SESAM modelocked solid-state lasers Lecture 2 SESAM! Semiconductor saturable absorber

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

Generation of high-energy, few-cycle optical pulses

An electric field wave packet propagating in a laser beam along the z axis can be described as

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

OPTICAL COMMUNICATIONS S

1 Mathematical description of ultrashort laser pulses

Control and Manipulation of the Kerr-lens Mode-locking Dynamics in Lasers

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

High average power ultrafast lasers

Optical phase noise and carrier-envelope offset noise of mode-locked lasers

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS

New Concept of DPSSL

Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Supplementary Figure 1: The simulated feedback-defined evolution of the intra-cavity

Enhanced nonlinear spectral compression in fibre by external sinusoidal phase modulation

Optical solitons and its applications

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

16. Theory of Ultrashort Laser Pulse Generation

E( t) = e Γt 2 e iω 0t. A( t) = e Γt 2, Γ Γ 1. Frontiers in ultrafast laser technology. Time and length scales. Example: Gaussian pulse.

Mode-locked laser pulse fluctuations

Design and operation of antiresonant Fabry Perot saturable semiconductor absorbers for mode-locked solid-state lasers

Microjoule mode-locked oscillators: issues of stability and noise

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

Chapter9. Amplification of light. Lasers Part 2

Nonlinear effects and pulse propagation in PCFs

Introduction Nonstationary regimes of ultrashort pulse generation in lasers have gained a great deal of attention in recent years. While the stable op

Q-switching stability limits of continuous-wave passive mode locking

Computation of the timing jitter, phase jitter, and linewidth of a similariton laser

Bound-soliton fiber laser

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier

Graphene mode-locked Cr:ZnS chirped-pulse oscillator

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Dark Soliton Fiber Laser

Ver Chap Lecture 15- ECE 240a. Q-Switching. Mode Locking. ECE 240a Lasers - Fall 2017 Lecture Q-Switch Discussion

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Derivation of the General Propagation Equation

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Low-Noise Modelocked Lasers: Pulse Dynamics, Feedback Control, and Novel Actuators

Supplementary Information. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons.

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses

HARMONICALLY mode-locked lasers are attractive as

Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics

Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO)

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Attosecond laser systems and applications

Noise and Frequency Control

Generation and Applications of High Harmonics

Vector dark domain wall solitons in a fiber ring laser

S. Blair February 15,

PART 2 : BALANCED HOMODYNE DETECTION

Engineering Medical Optics BME136/251 Winter 2017

ABRIDGING INTERACTION RESULT IN TEMPORAL SPREAD- ING

Quantum Electronics Laser Physics PS Theory of the Laser Oscillation

Introduction/Motivation/Overview

Erzeugung und Anwendung ultrakurzer Laserpulse. Generation and Application of Ultrashort Laser Pulses

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation

Generation of supercontinuum light in photonic crystal bers

Laser dynamics and relative timing jitter analysis of passively synchronized Er- and Yb-doped mode-locked fiber lasers

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

37. 3rd order nonlinearities

Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers

37. 3rd order nonlinearities

Kurzpuls Laserquellen

Optical Spectroscopy of Advanced Materials

Solitons. Nonlinear pulses and beams

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials

Highly Nonlinear Fibers and Their Applications

B 2 P 2, which implies that g B should be

Investigation of carrier to envelope phase and repetition rate fingerprints of mode-locked laser cavities

Ultrafast Laser Physics!

ULTRAFAST laser sources have enormous impact on many

Multilayer Thin Films Dielectric Double Chirped Mirrors Design

time is defined by physical processes

Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices

Slow, Fast, and Backwards Light: Fundamentals and Applications Robert W. Boyd

Ultra-short pulse propagation in dispersion-managed birefringent optical fiber

in dispersion engineering of mode-locked fibre

ECE 484 Semiconductor Lasers

Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector

arxiv: v1 [physics.optics] 28 Mar 2018

Optimizing the time resolution of supercontinuum spectral interferometry

Photon Physics. Week 5 5/03/2013

Transcription:

Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 7: Active modelocking Ultrafast Laser Physics ETH Zurich

Mode locking by forcing all modes in a laser to operate phase-locked, noise is turned into ideal ultrashort pulses τ 1 Δν ~ I (ω) I (t) ~ I (ω) I (t) +π +π ~ φ (ω) 0 -π φ (t) axial modes in laser not phase- locked " noise" ~ φ (ω) 0 -π φ (t) axial modes in laser phase- locked " ultrashort pulse" inverse proportional to phase- locked spectrum"

Active Modelocking

Passive Modelocking

Frequency comb T R = 1 f rep f rep = Δν ax I T ( ω ) = I ( ω )e i φ ( ω ) n=1 δ ( ω nδω ax ) f rep = Δν ax = Δω ax π = 1 T R I T ( t) = F 1 IT ω { } = I ( t) δ ( t nt R ) = I t nt R n=1 n=1 Pulse train: Spectrum is a frequency comb Single pulse: Spectrum is continuous

Frequency comb T R = 1 f rep f rep = Δν ax I T ( ω ) = I ( ω )e i φ ( ω ) n=1 δ ( ω nδω ax ) f rep = Δν ax = Δω ax π = 1 T R I T ( t) = F 1 IT ω { } = I ( t) δ ( t nt R ) = I t nt R n=1 n=1 Frequency comb: f n = f CEO + nf rep f rep : pulse repetition rate frequency f CEO : carrier envelope offset frequency H.R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller Appl. Phys. B 69, 37 (1999)#

Carrier-Envelope Offset (CEO) Phase H.R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller Appl. Phys. B 69, 37 (1999) F. W. Helbing, G. Steinmeyer, U. Keller IEEE J. of Sel. Top. In Quantum Electron. 9, 1030, 003 Mode-locked pulse train Pulse envelope A(t) T R CEO phase Δϕ 0 f CEO = Δϕ 0 πt R t Electric field: λ/c =.7 fs @800 nm E t = A t exp iω c t + iϕ 0 (t) CEO phase controlled in laser oscillator

Steady-state condition: axial wavelength: Axial mode spacing e g l e iφ = 1 g = l and φ λ m φ ( λ m ) = k n ( λ m ) L = 4π n( λ m ) L λ m λ m = n ( λ m ) L, m = 1,,3,... m = π m, m = 0,1,,... axial mode spacing: Δφ = φ ( λ m+1 ) φ ( λ m ) = π Δφ dφ dω ω =ω m Δφ dφ dω ω =ω m Δω ax = π Δω ax = dk dω LΔω = L ax Δω ax = π υ g Δω ax = π υ g L, Δν = υ g ax L, Δλ ax = λ c υ g L f rep = Δν ax = υ g λ 0 L

τ p << T R, and f rep = 1 T R Different modes of operation cw: continuous wave Q-switching: single axial mode τ p >> T R, and f rep << 1 T R (fundamental) modelocking: one pulse per cavity roundtrip, multi axial modes, phase-locked harmonic modelocking: f rep = n 1 T R, n =, 3,...

Balance between loss modulation and gain

Acousto-optic amplitude loss modulator U. Keller et al, Opt. Lett. 15, 45, 1990 and Ph.D. thesis U. Keller, Stanford University, Appl. Phys. 1989

Acousto-optic amplitude loss modulator t amplitude loss : E 0 e i ω 0 +ω a + E 0 e i ( ω 0 ω a )t intensity loss : E 0 e i ( ω 0 +ω a )t + E 0 e i ( ω 0 ω a )t L ( t) = E 0 [ 1+ cosω a t] U. Keller et al, Opt. Lett. 15, 45, 1990

AOM modelocked Nd:YLF laser at GHz Diode-pumped Nd:YLF laser: actively modelocked with an acousto-optic modelocker (AOM) AOM: Sapphire substrate, 0.5% loss modulation per watt U. Keller et al, Opt. Lett. 15, 45, 1990 K. J. Weingarten et al, Opt. Lett. 15, 96, 1990 Average output power: 135 mw Pulse duration: 7.1 ps Pulse repetition rate: GHz Wavelength: 1.047 µm

Theory: active modelocking without SPM and GDD Ansatz: Gaussian pulse E ( t) = exp Γ t + iω 0 t Steady-state condition: pulse envelope is not changing after one cavity roundtrip: Γ Γ = 0 Γ Γ = 0 = 16g Δω Γ s + Mω m g Γ s = M g ω m Δω g 4 τ p,s = ln = ln π Re Γ s 4 g M 1 f m Δ f g = 0.4457 4 g M 1 f m Δ f g D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum. Electron. 6, 694, 1970

Theory: active modelocking without SPM and GDD Ansatz: Gaussian pulse E ( t) = exp Γ t + iω 0 t Steady-state condition: pulse envelope is not changing after one cavity roundtrip: Γ Γ = 0 Γ Γ = 0 = 16g Δω Γ s + Mω m g Γ s = M g ω m Δω g 4 τ p,s = ln = ln π Re Γ s 4 g M 1 f m Δ f g = 0.4457 4 g M 1 f m Δ f g D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum. Electron. 6, 694, 1970

Ansatz: Gaussian pulse Gaussian pulse after amplification ( E ( t) = exp Γ t + iω 0 t E ( ω ) = exp ω ω 0 ) 4Γ E ( ω ) = exp g ω E ( ω ) = exp g 1 + 4 ω ω 0 Δω g E ( ω ) frequency dependent gain parabolic approximation: Gaussian pulse stays Gaussian pulse after amplification g Δω g 1 + 4 ω ω 0 g 1 and 4( ω ω 0 ) Δω g 1 g 4g Δω g ω ω 0 E 4g ( ω ) exp ω ω 0 Δω g ( exp ω ω 0 ) E ω 4 Γ D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum. Electron. 6, 694, 1970 1 Γ = 1 Γ + 16g Δω g Γ Γ = 16g Δω g Γ Γ 16g Δω g Γ

Gaussian pulse after modulator Amplitude loss modulator: m AM ( t) = exp l t = exp M 1 cosω mt Phase modulator: m FM ( t) = exp[ imcosω m t]

Gaussian pulse after amplitude loss modulator m AM ( t) = exp l t = exp M 1 cosω mt parabolic approximation cosx 1 x + O( x 4 ) m AM ( t) exp Mω m t, t << T m Ansatz: Gaussian pulse E ( t) = exp Γ t + iω 0 t E ( t) = m AM t E ( t) exp Mω m t E ( t) exp Γ t Γ Γ Mω m

Balance between gain and modulator At steady state the pulse shortening of the modulator is compensated by the pulse broadening of the gain. Parabolic approximation: curvature of loss modulation is compared to curvature of gain Γ Γ Mω m Γ Γ 16g Δω Γ g τ p = ln Re Γ pulse shortening pulse broadening

p. 1 and 13 Example Nd:YAG and N:YLF laser

Haus master equation A( T,t) T R T = ΔA i = 0 i Gain: ΔA 1 = g 1+ 1 Ω g d dt A T,t Loss modulator: ΔA M ( 1 cosω m t) A( T,t) Constant loss: A( T,t) T R T ΔA 3 la( T,t) = g 1+ 1 Ω g d dt l M 1 cosω mt A( T,t) parabolic approximation: M ω mt M 1 cosω m t Schrödinger equation for harmonic oscillator H. A. Haus, "Short pulse generation," in Compact Sources of Ultrashort Pulses, I. I. N. Duling, Eds. (Cambridge University Press 1995, New York, 1995) pp. 1-56.

Linearized operators (Appendix 5): Gain Gain dispersion: Ω g Δω g g( ω ) = g( z) L g Δω g 1+ ω ω 0 Ωg = g 1+ ω ω 0 g 1 ω ω 0 Ω g exp g ω A ( ω ) exp g ω A ω 1+ g 1 Δω Ω g = 1+ g g A ω Ω Δω g A ( ω ) Δω = ω ω 0 ΔA 1 = g 1+ 1 Ω g d dt A T,t

Linearized operators (Appendix 5): Modulator A out ( t) = exp M 1 cosω m t A in t e x 1 + x A out ( t) A in ( t) M ( 1 cosω m t) A in ( t) ( t) 1 M 1 cosω m t A in t ΔA = A out ΔA M ( 1 cosω m t) A( T,t)

Linearized operators (Appendix 5): Loss A out ( t) = e l A in ( t) e x 1 + x A out ( t) = e l A in t ΔA 3 = A out ( 1 l) A in ( t) ( t) A in ( t) la in ( T,t) ΔA 3 la( T,t)

Haus master equation A( T,t) T R T = ΔA i = 0 i Gain: ΔA 1 = g 1+ 1 Ω g d dt A T,t Loss modulator: ΔA M ( 1 cosω m t) A( T,t) Constant loss: A( T,t) T R T ΔA 3 la( T,t) = g 1+ 1 Ω g d dt l M 1 cosω mt A( T,t) parabolic approximation: M ω mt M 1 cosω m t Schrödinger equation for harmonic oscillator

Solution to the Master equation g 1+ 1 Ω g d dt l M 1 cosω t m A( T,t) = 0 g Ω g d dt M 1 cosω m t A = l g + λ A Schrödinger equation with a periodic potential (e.g. crystal): m x + V x Ψ = EΨ Does not possess a bound state (Bloch wave functions). However, if periodic potential is deep enough (e.g. for core electrons in crystal), electron wave packet is localized. For a deep cosine-shaped potential we can make a parabolic approximation: M ω mt M 1 cosω m t Schrödinger equation for a harmonic oscillator: solution A n ( t) = W n n π n!τ H n t τ e t τ

Solution to the Master equation A n ( t) = W n n π n!τ H n t τ e t τ Hermite polynomial of grade n, H 0 = 1: τ = D g 4 M s gain dispersion parameter: D g = g Ω g τ p = 1.66τ = 1.66 4 g M 1 ω m Ω g = 0.445 4 g M 1 f m Δ f g curvature of the loss modulation: M s = Mω m The corresponding eigenvalues are given by: The solution with if all other solutions Re λ = 0 < 0 Re λ n is a stable pulse λ n = g n l Mω m τ n + 1 A n ( T,t) = A n ( t)e λ nt T R

Solution to the Master equation λ n = g n l Mω m τ n + 1 Stable solution: 0 = g l 1 Mω mτ λ 0 = 0 λ n < 0 for n 1 D g = g Ω g g = l + 1 Mω mτ g(ω) M s = Mω m 1 Mω mτ = M s τ eq. 51 g = l + 1 Mω mτ = D g τ << 1 eq. 49 l ω g = l + D g τ steady-state condition: g = l ( gain equal loss )

Active modelocking in the spectral domain ΔA( t) = M ( 1 cosω m t) A( t) = m( t) A( t) E (t) ΔA ( ω ) = m ( ω ) A ( ω ) M m ( ω ) = F { M + Mcosω m t} = π Mδ ω = π Mδ ω + M F eiω mt { } + F e iω mt { } + π M δ ( ω ω m ) + δ ( ω + ω m ) 1 M M/ M/ t f - f m f f + f m für M << 1

Active modelocking with SPM (no GDD) Master equation: A( T,t) T R T = ΔA i = 0 i

Linearized operators: self-phase modulation (SPM) n > 0 I(t) I t φ ( t) = kn I ( t) L K = kn L K A( t) δ A( t) leading edge SPM: red Pulsfront Gaussian Pulse Zeitabhängige Intensität trailing Pulsflanke edge SPM: blue t ω ( t) t Verbreiterung des Spektrums Spectral broadening ω t ω 0 0 t δ kn L K = dφ ( t ) dt = δ di ( t) dt E ( L K,t) = A 0,t exp iω 0 t + iφ ( t) = A( 0,t)exp iω 0t ik n ω 0 A( L K,t) = e iδ A A( 0,t)e ik n ω 0 L K δ A <<1 ( ) A 0,t 1 iδ A t L K iδ A( t) e ik n ω 0 L K ΔA SPM iδ A( T,t)

Active modelocking with SPM (no GDD) T R T A T,t = g l + D g t M ( 1 cosω t m ) iδ A( T,t) + iψ A T,t = 0 For an analytical solution need an additional degree of freedom: carrier envelope offset phase E ( z,t) A z,t e i ( ω 0t k( ω 0 )z+ψ ) A out ( t) = e iψ A in ( t) ΔA 5 iψ A( T,t)

Active modelocking with SPM (no GDD) T R T A T,t = g l + D g t M ( 1 cosω mt) iδ A( T,t) + iψ A T,t = 0 Solution: chirped Gaussian pulse = A 0 exp 1 A t t τ ( 1 iβ) τ p = 1.66τ = 1.66 4 Mω m D g + φ nl 4D g g l Mω m τ φ nl τ = 0 4D g

Example Nd:YLF laser Autocorrelation Spectrum FWHM = 17 ps -40-0 0 0 40 Time [ps] FWHM = 0.10 nm (a) (b) T=.5% flat Output 15 cm HR AO modelocker Nd:YLF crystal 5 mm thick HR 1 µm HT pump 15 cm Pump HR flat -0.10 0.00 0.10 Relative bandwidth [nm] τ p,fwhm = 1.66 4 Mω m D g + φ nl 4D g = 1.66 4 1.005 10 6 s.467 10 17 s + 5.09 10 17 s p. 6 τ p,fwhm = 17.8 ps B. Braun, K. J. Weingarten, F. X. Kärtner, U. Keller, Appl. Phys. B 61, 49, 1995

Example Nd:glass laser D. Kopf, F. X. Kärtner, K. J. Weingarten, U. Keller, Optics Lett.19, 146, 1994 output pump beam cw Ti:Saph 7cm R=10cm Nd:glass 4mm R=10cm AOM PD OC x φ : knife SF10 prisms OC knife edge spectral filter = long-pass wavelength filter

Example Nd:glass laser D. Kopf, F. X. Kärtner, K. J. Weingarten, U. Keller, Optics Lett.19, 146, 1994 Output 70 mw TBP = 0.3 Nd:phosphate (+ knife) Nd:silicate (no knife) output pump beam cw Ti:Saph OC 7cm R=10cm Nd:glass 4mm knife SF10 prisms x R=10cm AOM φ : PD

Homogeneous vs. inhomogeneous broadening Nd:phosphate homogeneous behaviour Nd:silicate inhomogeneously broadened no filter needed TBP=0.3 TBP=0.3

Active modelocking with SPM and negative GDD GDD < 0 T R T A T,t = id iδ A T,t t A T,t + g l + D g t M 1 cosω mt A T,t = 0 nonlinear Schrödinger equation

First and second order dispersion Taylor expansion around the center frequency ω 0 : Δω = ω ω 0 k n ( ω ) k n ( ω 0 ) + k n Δω + 1 k Δω n +... First order dispersion: k n = dk n dω Second order dispersion: k n = d k n dω

Linearized operators: group delay dispersion (GDD) A ( z,δω ) = A ( 0,Δω )e iδknz = A 0,Δω e i k n ω 0 +Δω k n ω 0 z k n ( ω ) k n ( ω 0 ) + k n Δω + 1 k Δω n +... A ( z, Δω ) A 0, Δω Δ AGDD exp i 1 k nδω k n Δω <<1 A 0, Δω ( Δω ) i 1 k nδω A ( Δω ) idδω A ( Δω ) 1 i 1 D 1 k n k nδω ω i t ω t = i t Fourier transformation: Δω t ΔA GDD id t

Soliton-like pulse formation and stabilization A(T,t ) : slowly varying field envelope -> Haus master equation T R T A(T,t ) = id + iδ A(T,t) t A(T,t ) + g l + D g t q(t ) A(T,t ) GDD SPM sat.gain - loss net gain filtering loss modulation Nonlinear Schrödinger Equation T R = cavity roundtrip time g D g = Ω g = gain dispersion Ω g = gain bandwidth active modelocking» % <<

Soliton perturbation theory Ansatz: A(T,t) = Asech t τ T exp i Φ 0 T R soliton + small perturbations continuum only GDD & AOM q(t) = M (1-cos(ω M t)) spreading Continuum pulse spectrum Soliton pulse spectrum Loss Saturated gain GDD GDD GDD GDD Time domain w 0 Frequency domain w Dispersion spreads continuum out where it sees more loss

Example Nd:glass laser Initially interference of soliton pulse with continuum Over >1000 round trips continuum starts to decay Stable soliton pulses are obtained Soliton modelocking τ= 4D δ ep

Dispersion tuning: Pulses behave like ideal solitons GDD negative GVD, fs 550 500 450 400 350 300 τ = 4D δ W t... pulse width D... GDD d... SPM coefficient W... pulse energy Pulse width, ps 1.4 1. 1.0 0.8 0.8 Pulse width Time-bandwidth-product 1.0 1. 1.4 1.6 ideal 1.8 0.35 0.30 0.5 0.0 0.15 0.10 0.05 0.00 Time-Bandwidth-Product Prism Position, mm typical soliton behaviour linear dependence of τ on total dispersion Nd:glass (phosphate), mm thick

Pulse width reduction due to soliton formation pulsewidth reduction R 1 10 8 6 4 without reshaped gain profile (Nd:phosphate) flattened net gain profile R= AML pulsewidth (without SPM, GVD) pulsewidth of soliton 1 10 100 1000 10000 normalized dispersion D n = D D g τ min = 6 D g Φ 0 M S D... group delay dispersion (total intracavity) D g = g Ω g... gain dispersion Ω g... group delay dispersion (total intracavity) R max = 1.66 1.76 D n,min = 9 1 3 (9Φ 0 /) D g M S (9Φ 0 /) D g M S

Conclusion and outlook active mode-locking + soliton Slow absorber + soliton loss gain Fast saturable absorber loss gain Theory & Experiments: Soliton modelocking (AOM to stabilize soliton) Soliton modelocking (slow saturable absorber to stabilize soliton) Fast saturable absorber (e.g. Kerr lens modelocking - KLM)