Momentum and Impulse. Announcements. Learning Resources and Suggestions 8.01 W05D1

Similar documents
v 1 parabolic orbit v 3 m 2 m 3

Chapter 10 Momentum, System of Particles, and Conservation of Momentum

Chapter 10 Momentum, System of Particles, and Conservation of Momentum

Module 17: Systems, Conservation of Momentum and Center of Mass

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

When solving problems involving changing momentum in a system, we shall employ our general problem solving strategy involving four basic steps:

Momentum Practice Problems

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum.

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum.

Chapter 9 Impulse and Momentum

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions

Algebra Based Physics

Chapter 7- Linear Momentum

Chapter 7. Impulse and Momentum

Center of Mass & Linear Momentum

Physics 110 Homework Solutions Week #6 - Wednesday

October 24. Linear Momentum: - It is a vector which may require breaking it into components

PHYS 1441 Section 002 Lecture #17

Momentum and Collisions

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

What is momentum? Inertia in Motion.

Impulse (J) J = FΔ t Momentum Δp = mδv Impulse and Momentum j = (F)( p = ( )(v) F)(Δ ) = ( )(Δv)

Chapter 7. Impulse and Momentum

Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision.

Welcome back to Physics 211

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving

Collisions. Of classical objects like collisions of motor vehicles. Of subatomic particles collisions allow study force law.

Welcome back to Physics 211

Physics 131: Lecture 15. Today s Agenda

5.1 Momentum and Impulse

Physics 231 Lecture 14

Momentum Problems. What is the total momentum of the two-object system that is shown after the expansion of the spring?

Physics 100. Today. Finish Chapter 5: Newton s 3 rd Law. Chapter 6: Momentum

Problem Set 4 Momentum and Continuous Mass Flow Solutions

Practice Problems for Exam 2 Solutions

Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem

Inaugural University of Michigan Science Olympiad Invitational Tournament. Hovercraft

AP Mechanics Summer Assignment

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v.

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left

System of Particles and of Conservation of Momentum Challenge Problems Solutions

Chap. 8: Collisions and Momentum Conservation

Physics 131: Lecture 15. Today s Agenda

5.2 Conservation of Momentum in One Dimension

PHYS 1441 Section 002 Lecture #17

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

LECTURE 13- PROBLEMS. Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

AP Physics C. Momentum. Free Response Problems

Chapter 9: Momentum and Conservation. Newton s Laws applied

Physics 211: Lecture 14. Today s Agenda

Science 20 Physics Review

Announcements. There will still be a WebAssign due this Friday, the last before the midterm.

Potential Energy & Conservation of Energy

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

Mechanics for systems of particles and extended bodies

Impulse. Two factors influence the amount by which an object s momentum changes.

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision

Exam 2: Equation Summary

Chapter 9. Center of Mass and Linear Momentum

Version PREVIEW Semester 1 Review Slade (22222) 1

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

Today's goal: I can explain and apply concepts of work and energy (3U) to real world applicaons.

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Section 4: Newton s Laws and Momentum

Lecture 11. Linear Momentum and Impulse. Collisions.

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

AP Physics 1 Momentum

Physics 100. Today. Finish Chapter 5: Newton s 3 rd Law. Chapter 6: Momentum

Fall 2009 Sample Problems Exam 2

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta.

Chapter 9: Impulse and Momentum

Inertia, momentum 6.4

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Chapter 8: Particle Systems and Linear Momentum

Impulse & Linear Momentum

Part Two: Earlier Material

Unit 2: Vector Dynamics

AP PHYSICS C Momentum Name: AP Review

6 th week Lectures Feb. 12. Feb

Part I Review Unit Review Name Momentum and Impulse

Momentum and Impulse Concept Tests

Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Chapter 9. Linear Momentum and Collisions

When particle with mass m moves with velocity v, we define its Linear Momentum p as product of its mass m and its velocity v:

AP Physics Momentum Practice Test. Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b)2.25e7 (c)3 (d)1.5e7 17.(a)9 (b)2 (c)1.5 (d) (e).

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

Chapter: The Laws of Motion

Chapter 6 - Linear Momemtum and Collisions

Momentum, impulse and energy

Study Questions/Problems Week 6

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Kinetic Energy and Work

1. The diagram below shows the variation with time t of the velocity v of an object.

Momentum and Impulse Practice Multiple Choice

Transcription:

Momentum and Impulse 8.01 W05D1 Today s Reading Assignment (W05D1): MIT 8.01 Course Notes Chapter 10 Momentum, System of Particles, and Conservation of Momentum Sections 10.1-10.9 Announcements Problem Set 3 due Week 5 Tuesday at 9 pm in box outside 26-152 Math Review Week 5 Tuesday 9-11 pm in 26-152. Add Date Friday Oct 4 Learning Resources and Suggestions Sunday Tutoring Session 1-5 pm in 26-152 Office Hours: You can attend any office hour that fits your schedule Join Seminar XL Study Group TSR Tutorial Service Room 12-124: Individual tutoring Physics Homework Nights Sunday in 12-124 from 7 to 11 p.m. Study Suggestions: Print Today s Presentation Slides PDF (Print) version and bring to each class Print and work through In-class and Friday Problem Solving solutions Print and work through Problem Set solutions if you had trouble with any particular problem 1

Momentum and Impulse Obeys a conservation law Simplifies complicated motions Describes collisions Basis of rocket propulsion & space travel Momentum and Impulse: Single Particle p mv Momentum SI units [kg m s -1 ] [N s] Δ p mδv Change in momentum Force F ma m d v d p t f Impulse I t f F d t f p dp Δp p(t f ) p(t i ) t i t i t i SI units [N s] Concept Question: Pushing Identical Objects Identical constant forces push two identical objects A and B continuously from a starting line to a finish line. Neglect friction. If A is initially at rest and B is initially moving to the right, 1. Object A has the larger change in momentum. 2. Object B has the larger change in momentum. 3. Both objects have the same change in momentum 4. Not enough information is given to decide. 2

Table Problem: Impulse and Superball A superball of m, starting at rest, is dropped from a height h i above the ground and bounces back up to a height of h f. The collision with the ground occurs over a time interval Δt c. Ignore air resistance. a) What is the momentum of the ball immediately before the collision? b) What is the momentum of the ball immediately after the collision? c) What impulse is imparted to the ball? d) What is the average force of the ground on the ball? Concept Question: Impulse The figure to the right depicts the paths of two colliding steel balls, A and B. Which of the arrows 1-5 best represents the impulse applied to ball B by ball A during the collision? Demo: Jumping Off the Floor with a Non-Constant Force 3

Demo Jumping: Non-Constant Force Plot of total external force vs. time for Andy jumping off the floor. Weight of Andy is 911 N. Demo Jumping: Impulse Shaded area represents impulse of total force acting on Andy as he jumps off the floor F total ( t) N( t) + Fgrav I t f 1.23 s total [ ti, t f ] F ( t) 199 N s ti 0.11s Demo Jumping: Height When Andy leaves the ground, the impulse is I y [0.11 s,1.23 s] 199 N s So the y-component of his velocity is v y, f I y [t i,t f ] / m (199 N s)(9.80 m s -2 )/(911 N) 2.14 m s -1 Andy jumped 2 (1 / 2)mv y, f 2 mgh h v y, f / 2g 23.3 cm 4

System of Particles: Center of Mass Position and Velocity of Center of Mass Mass for collection of discrete bodies (system): Momentum of system: p sys Position of center of mass R cm 1 i N m i ri Velocity of center of mass V cm 1 i N i N i N m i m i vi m vi i p sys p sys Vcm Continuous Bodies of Center of Mass Infinitesimal mass element ρdv, volume element m i dm σ da, area element λds, length element Mass for system: in m i dm body Position vector for infinitesimal element r i r Position of center of mass Velocity vector for infinitesimal element Velocity of center of mass R cm 1 V cm 1 in m ri i 1 v i v body in m vi i 1 dmv body dm r p sys 5

Table Problem: Center of Mass of Rod and Particle Post- Collision A slender uniform rod of length d and mass m rests along the x-axis on a frictionless, horizontal table. A particle of equal mass m is moving along the x- axis at a speed v 0. At t 0, the particle strikes the end of the rod and sticks to it. Find a vector expression for the position of the center of mass of the system for (i) t 0, (ii) t > 0. The figure on the right shows an overhead view of the rod lying on the table. System of Particles: Internal and External Forces, Center of Mass Motion System of Particles: Newton s Second and Third Laws The momentum of a system remains constant unless the system is acted on by an external force in which case the acceleration of center of mass satisfies F ext d p sys d V cm Acm 6

Demo : Center of Mass Trajectory B78 http://tsgphysics.mit.edu/front/?pagedemo.php&letnumb 78&show0 Odd-shaped objects with their centers of mass marked are thrown. The centers of mass travel in a smooth parabola. The objects consist of: a squash racket, a 16 diameter disk weighted at one point on its outer rim, and two balls connected with a rod. This demonstration is shown with UV light. Video link: http://techtv.mit.edu/videos/3052-center-of-mass-trajectory CM moves as though all external forces on the system act on the CM so the jumper s cm follows a parabolic trajectory of a point moving in a uniform gravitational field Center of mass passes under the bar 7

Table Problem: Exploding Projectile Center of Mass Motion An instrument-carrying projectile of mass m 1 accidentally explodes at the top of its trajectory. The horizontal distance between launch point and the explosion is x 0. The projectile breaks into two pieces which fly apart horizontally. The larger piece, m 3, has three times the mass of the smaller piece, m 2. To the surprise of the scientist in charge, the smaller piece returns to earth at the launching station. a) How far has the center of mass of the system traveled from the launch when the pieces hit the ground? b) How far from the launch point has the larger piece traveled when it first hits the ground? Internal Force on a System of N Particles is Zero The internal force on the ith particle is sum of the interaction forces with all the other particles F int,i The internal force is the sum of the internal force on each particle Newton s Third Law: internal forces cancel in pairs F i, j F j,i jn j1 i j So the internal force is zero F int 0 F j,i F int F int,i jn j1 i j F j,i Force on a System of N Particles is the External Force The force on a system of particles is the external force because the internal force is zero F F ext + F int F ext 8

External Force and Momentum Change The momentum of a system of N particles is defined as the sum of the individual momenta of the particles p sys Force changes the momentum of the system i N d i N p F F i i d p sys Force equals external force F F ext i N p i Vcm Newton s Second and Third Laws for a System of Particles: The external force is equal to the change in momentum of the system and is proportional to the acceleration of the center of mass. F ext d p sys d(m V sys cm ) m Acm sys Concept Q.: Pushing a Baseball Bat A baseball bat is pushed with a force F. You may assume that the push is instantaneous. Which of the following locations will the force produce an acceleration of the center of mass with the largest magnitude? 1. Pushing at Position 1. 2. Pushing at Position 2 (center of mass). 3. Pushing at Position 3. 4. Pushing at 1,2,and 3 all produce the same magnitude of acceleration of the center of mass/ 9

Conservation of Momentum: System For a fixed choice of system, if there are no external forces acting on the system then the momentum of the system is constant is constant. F ext 0 Δ p system 0 Strategy: Momentum of a System 1. Choose system 2. Identify initial and final states 3. Identify any external forces in order to determine whether any component of the momentum of the system is constant or not i) If there is a non-zero total external force: total F ext d p sys ii) If the total external force is zero then momentum is constant p p sys,0 sys,f External Forces and Constancy of Momentum Vector The external force may be zero in one direction but not others The component of the system momentum is constant in the direction that the external force is zero The component of system momentum is not constant in a direction in which external force is not zero 10

Modeling: Instantaneous Interactions Decide whether or not an interaction is instantaneous. External impulse changes the momentum of the system. t+δt col I[ t, t + Δ t ] F ( F ) Δ t Δp col ext ext ave col sys If the collision time is approximately zero, t Δt col then the change in momentum is approximately zero. Δp 0 system 0 Table Problem: Landing Plane and Sandbag A light plane of mass 1000 kg makes an emergency landing on a short runway. With its engine off, it lands on the runway at a speed of 40 ms -1. A hook on the plane snags a cable attached to a sandbag of mass 120 kg and drags the sandbag along. If the coefficient of friction between the sandbag and the runway is µ 0.4, and if the plane s brakes give an additional retarding force of magnitude 1400 N, how far does the plane go before it comes to a stop? 11