ANALYSIS AND INTERPRETATION OF LAND RESOURCES

Similar documents
GROUNDWATER CONFIGURATION IN THE UPPER CATCHMENT OF MEGHADRIGEDDA RESERVOIR, VISAKHAPATNAM DISTRICT, ANDHRA PRADESH

[Penumaka, 7(1): January-March 2017] ISSN Impact Factor

Environmental Impact Assessment Land Use and Land Cover CISMHE 7.1 INTRODUCTION

Abstract: About the Author:

7.1 INTRODUCTION 7.2 OBJECTIVE

CHAPTER VII FULLY DISTRIBUTED RAINFALL-RUNOFF MODEL USING GIS

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 6, No 2, 2015

CHAPTER - IV METHODOLOGY

DEMARCATION OF GROUNDWATER PROSPECT ZONES THROUGH RS AND GIS TECHNIQUES IN A BASIN

Journal of Telecommunications System & Management

Hydrogeomorphological mapping upto Cadastral level, by using High resolution satellite Data in..

VILLAGE INFORMATION SYSTEM (V.I.S) FOR WATERSHED MANAGEMENT IN THE NORTH AHMADNAGAR DISTRICT, MAHARASHTRA

Geospatial Data Integration For Groundwater Recharge Estimation In Hard Rock Terrain. Authors,

URBAN WATERSHED RUNOFF MODELING USING GEOSPATIAL TECHNIQUES

Abstract. TECHNOFAME- A Journal of Multidisciplinary Advance Research. Vol.2 No. 2, (2013) Received: Feb.2013; Accepted Oct.

Ground Water Potential Mapping in Chinnar Watershed (Koneri Sub Watershed) Using Remote Sensing & GIS

Dr. S.SURIYA. Assistant professor. Department of Civil Engineering. B. S. Abdur Rahman University. Chennai

I.J.E.M.S., VOL.4 (1) 2013: ISSN X

Application of Geographical Information System (GIS) tools in watershed analysis

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November ISSN

Effect of land use/land cover changes on runoff in a river basin: a case study

International Journal of Intellectual Advancements and Research in Engineering Computations

MAPPING LAND USE/ LAND COVER OF WEST GODAVARI DISTRICT USING NDVI TECHNIQUES AND GIS Anusha. B 1, Sridhar. P 2

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 1, No 1, 2010

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

Urban Hydrology - A Case Study On Water Supply And Sewage Network For Madurai Region, Using Remote Sensing & GIS Techniques

Journal of Engineering Research and Studies

LAND SUITABILITY STUDY IN LAND DEGRADED AREA DUE TO MINING IN DHANBAD DISTRICT, JHARKHAND.

Thematic Mapping in Siwani Area, District Bhiwani using Remote Sensing and Gis

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

Remote Sensing and GIS Application in Change Detection Study Using Multi Temporal Satellite

Mapping the Groundwater Potential Zone for Bengaluru Urban District

Favorable potential zone map using Remote sensing and GIS

Creation of physical characteristics information for Natural Resources Management Using Remote sensing and GIS : A Model study

About the Author: Abstract:

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT

Evaluation of groundwater potential zones in Krishnagiri District, Tamil Nadu using MIF Technique

CREATION OF QUERY BASED DECISION SUPPORT SYSTEM FOR SELECTION OF PIPELINE CORRIDOR SITE USING RS & GIS: A MODEL STUDY

CHANGES IN VIJAYAWADA CITY BY REMOTE SENSING AND GIS

GIS Based Delineation of Micro-watershed and its Applications: Mahendergarh District, Haryana

Spatiotemporal Analysis of Noida, Greater Noida and Surrounding Areas (India) Using Remote Sensing and GIS Approaches

International Journal of Scientific Research and Reviews

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 3, No 3, 2013

Wastelands Analysis and Mapping of Bhiwani District, Haryana

A Case Study of Using Remote Sensing Data and GIS for Land Management; Catalca Region

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 1, No 3, 2010

Block Level Micro Watershed Prioritization Based on Morphometric and Runoff Parameters

Identification of Groundwater Recharge Potential Zones for a Watershed Using Remote Sensing and GIS

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 4, No 2, 2013

GIS BASED OPTIMAL ROUTE ANALYSIS FOR THE TRANSPORTATION OF SOLID WASTE- A CASE STUDY FROM HYDERABAD CITY

CHAPTER 4 METHODOLOGY

Land Use and Land Cover Mapping and Change Detection in Jind District of Haryana Using Multi-Temporal Satellite Data

LAND USE AND LAND COVER ANALYSIS USING 8- BAND DATA: A CASE STUDY OF BELGAUM CITY AND ITS SURROUNDING.

Mr. P. Ramamohana Rao and Prof. P. Suneetha

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 3, No 1, 2012

REMOTE SENSING AND GIS APPLICATIONS FOR TERRAIN EVALUATION AND LAND RESOURCES ASSESSMENT IN YERALA RIVER BASIN, WESTERN MAHARASHTRA, INDIA

REMOTE SENSING AND GIS BASED APPROACH FOR DELINEATION OF ARTIFICIAL RECHARGE SITES IN PALANI TALUK, DINDIGUL DISTRICT, TAMILNADU, INDIA

9. MAPPING OF SALT-AFFECTED AND WATERLOGGED AREAS IN PART OF NAGARJUNA SAGAR PROJECT (NSP), PRAKASAM DISTRICT, ANDHRA PRADESH (ANGRAU/ NRSA)

Watershed Development Prioritization by Applying WERM Model and GIS Techniques in Takoli Watershed of District Tehri (Uttarakhand)

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH Volume 1, No1, Copyright 2010 All rights reserved Integrated Publishing Association

MORPHOMETRIC ANALYSIS OF WATERSHEDS IN THE KUNIGAL AREA OF TUMKUR DISTRICT, SOUTH INDIA USING REMOTE SENSING AND GIS TECHNOLOGY

APPLICATION OF REMOTE SENSING AND GIS TECHNIQUES FOR GROUNDWATER RECHARGE SITE SELECTION IN HARD ROCK AREAS A CASE STUDY FROM SOUTH INDIA

Monitoring and Temporal Study of Mining Area of Jodhpur City Using Remote Sensing and GIS

CHANGE DETECTION USING REMOTE SENSING- LAND COVER CHANGE ANALYSIS OF THE TEBA CATCHMENT IN SPAIN (A CASE STUDY)

Australian Journal of Basic and Applied Sciences. Application of Remote Sensing and GIS for the Assessment of Groundwater Quality

HIGH RESOLUTION SATELLITE DATA FOR LAND USE/LAND COVER MAPPING IN ROHTAK DISTRICT HARYANA, INDIA

1. Introduction. S.S. Patil 1, Sachidananda 1, U.B. Angadi 2, and D.K. Prabhuraj 3

EVALUATION OF GROUND WATER POTENTIAL OF NALLATANGAAL ODAI USING REMOTE SENSING AND GIS TECHNIQUES

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 4, No 4, 2014

Landuse/Landcover Change Detection in Umshing- Mawkynroh of East Khasi Hills District, Meghalaya Using Spatial Information Technology

HYDROGEOLOGICAL EVOLUTION OF PAGERU RIVER BASIN, INDIA: AN INTEGRATED APPROACH USING REMOTE SENSING, GEOPHYSICAL DATA

International Journal of Advancements in Research & Technology, Volume 2, Issue 5, M ay ISSN

International Journal of Advancements in Research & Technology, Volume 2, Issue 7, July ISSN

MODULE 8 LECTURE NOTES 2 REMOTE SENSING APPLICATIONS IN RAINFALL-RUNOFF MODELLING

ESTIMATION OF MORPHOMETRIC PARAMETERS AND RUNOFF USING RS & GIS TECHNIQUES

Survey of Land Use and Land Cover Change Detection using Remote Sensing

M.C.PALIWAL. Department of Civil Engineering NATIONAL INSTITUTE OF TECHNICAL TEACHERS TRAINING & RESEARCH, BHOPAL (M.P.), INDIA

Spatio-Temporal Land Cover Analysis in Makhawan Watershed (M.P.), India through Remote Sensing and GIS Techniques

GIS Based Approach for Calculation of Canal Conveyance Losses

EFFECT OF WATERSHED DEVELOPMENT PROGRAMME IN GUDHA GOKALPURA VILLAGE, BUNDI DISTRICT, RAJASTHAN - A REMOTE SENSING STUDY

Site Suitability Analysis for Urban Development: A Review

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 2, No 1, 2011

23 in Watershed Management

Analysis of Land Use And Land Cover Changes Using Gis, Rs And Determination of Deforestation Factors Using Unsupervised Classification And Clustering

ASTER DEM Based Studies for Geological and Geomorphological Investigation in and around Gola block, Ramgarh District, Jharkhand, India

MODELING RUNOFF RESPONSE TO CHANGING LAND COVER IN PENGANGA SUBWATERSHED, MAHARASHTRA

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 2, No 1, 2011

Landuse and Landcover change analysis in Selaiyur village, Tambaram taluk, Chennai

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 2, No 2, 2011

Inventory of Soil Resources of Narmada District, Gujarat Using Remote Sensing and GIS Techniques

Delineation of Groundwater Potential Zones in the Mudugunduru Sub Watershed, Mandya District, Using Remote Sensing and GIS

INVENTORY OF SOIL & LAND RESOURCES OF NALGONDA DISTRICT, TELANGANA STATE USING REMOTE SENSING TECHNIQUES

RAINWATER HARVESTING AND ARTIFICIAL RECHARGE OF GROUNDWATER IN WATERSHEDS OF CHHATTISGARH STATE, INDIA A CASE STUDY

Hydrological and surface analysis using remote sensing & GIS techniques in parts of Nalgonda district, Telangana, India

IDENTIFICATION OF LANDSLIDE-PRONE AREAS USING REMOTE SENSING TECHNIQUES

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Change Detection in Landuse and landcover using Remote Sensing and GIS Techniques

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 ISSN

Application of USLE Model & GIS in Estimation of Soil Erosion for Tandula Reservoir

STUDY ON TYPE AND DISTRIBUTION OF WETLANDS OF SIKKIM HIMALAYAS USING SATELLITE IMAGERY WITH REMOTE SENSING & GIS TECHNIQUE

Transcription:

ANALYSIS AND INTERPRETATION OF LAND RESOURCES USING REMOTE SENSING AND GIS: A CASE STUDY S.S. Asadi 1, B.V.T.Vasantha Rao 2, M.V. Raju 3 and M.Anji Reddy 4 1 Assoc. Prof., Deptt. of Civil Engineering., KL University, Green fields, Vaddeswaram, Guntur, A.P, India 2 Asstt. Prof., Deptt. of Civil Engineering., P.V.P. Siddhardha Institute of Tech., Kannure, Vijayawada. 3 Asstt. Prof., Deptt. of Civil Engineering, Vignan University, Vadllamudi, Guntur, A.P, India 4 Director Foreign Relations, Jawaharlal Nehru Technological University, Hyderabad, A.P, India ABSTRACT The human Activities are Constantly adding industrial, domestic and Agricultural wastes to the ground water reservoirs at an alarming rate. In the last few decades, parallel with rapidly developing technology, increase in population and urbanization we have been witnessing alarmed phenomena all over the world. Anthropogenic activities including generation and indiscriminate disposal of solid wastes and extensive use of fertilizers have resulted in increasing levels of air, water and soil pollution, changing land use patterns, decrease in arable land and other dominant problems. The thematic map of the study area is prepared from linearly enhanced fused data of IRS-ID PAN and LISS-III merged satellite imagery and Survey Of India (SOI) toposheets on 1:50,000 scale using visual interpretation technique and using AutoCad and Arc/Info GIS software forming the spatial database. KEYWORDS: Thematic maps, groundwater quality, remote sensing and GIS I. INTRODUCTION Man needs Land for domestic purposes such as cooking, cleaning utensils, gardening, washing clothes and above all for drinking. It is also needed for commercial, industrial and recreational purposes. Land used for such purposes should be not polluted, but should be of good quality. Urbanization and industrialization have directly or indirectly polluted most of the land sources on a global scale. Impact studies can contribute to improve urban development and environmental planning at the project and policy levels and it also introduces analytical tools to support such planning. Remote sensing applications have been operationalized in most of the natural resource management themes and at present the trend is on integrated surveys to arrive at sustainable developmental packages. Keeping this in view, an attempt is made. II. STUDY AREA The Maripeda Mandal lies geographically between latitudes 17 0 20 00 and 17 0 35 00 and longitudes 79 0 45 00 to 80 0 00 00 is covered in the Survey of India toposheet numbers 56 O/14 and 56 O/15. It is one of the 51 Mandals of Warangal district, in Andhra Pradesh. Maripeda town is at a distance of 90 kms. from Warangal (District H.Q.) and 120kms from Hyderabad (State Capital). 309 Vol. 2, Issue 1, pp. 309-314

International Journal of Advances in Engineering & Technology, Jan 2012. IJAET ISSN: 2231-1963 2.1 Study Objectives To prepare the digital thematic maps namely Base map, Transport network map, Geomorphology map, Ground Water Potential map, Land use/ Land cover, Hydro geomorphology, Physiographic map, Waste land map, Drainage map etc. using satellite data, collateral data and field data on ARC/INFO GIS platform. This constitutes the spatial database. III. METHODOLOGY 3.1 Data collection Different data products required for the study include Survey of India (SOI) toposheets bearing with numbers 56O/14 and 56O/15 on 1:50,000 scale. Fused data of IRS 1D PAN and LISS-III satellite imagery obtained from National Remote Sensing Agency (NRSA), Hyderabad, India. Collateral data collected from related organizations, comprises of water quality and demographic data [2]. 3.2 Database creation Satellite imageries are geo-referenced using the ground control points with SOI toposheets as a reference and further merged to obtain a fused, high resolution (5.8m of PAN) and colored (R,G,B bands of LISS-III) output in EASI/PACE Image processing software. The study area is then delineated and subsetted from the fused data based on the latitude and longitude values and a final hard copy output is prepared for the generation of thematic maps using visual interpretation technique as shown in Figure 1. These thematic maps (raster data) are converted to vector format by scanning using an A0 flatbed deskjet scanner and digitized using AutoCAD software for generation of digital thematic maps using Arc/Info and ARCVIEW GIS software. The GIS digital database consists of thematic maps like land use/land cover, drainage, road network using Survey of India (SOI) toposheets and fused data of IRS - ID PAN and IRS-ID LISS-III satellite imagery (Figure 2). Figure1. Fused satellite imagery 3.2.1 Spatial Database Thematic maps like base map and drainage network maps are prepared from the SOI toposheets on 1:50,000 scale using AutoCAD and Arc/Info GIS software to obtain a baseline data. Thematic maps of the study area was prepared using visual interpretation technique from the fused satellite imagery (IRS-ID PAN + IRS-ID LISS-III) and SOI toposheets along with ground truth analysis. All the maps are scanned and digitized to generate a digital output (Figure 1). 310 Vol. 2, Issue 1, pp. 309-314

Figure 2.Land Use/Land Cover IV. RESULTS AND DISCUSSION 4.1 Village Map This shows the geographical locations of all villages in the Mandal is called Village Map [1]. This map is prepared by digitization of the maps of Central Survey Office. Revenue boundaries of all the villages are plotted in this map. The entire data of the village available is attached to this Map as database using GIS. This database is very useful to know the present scenario of a village. This map is used for analyzing village wise land resources. In the study area there are 23 revenue villages, out of these Maripeda, which is the Mandal head quarter. By preparing the Village map feature of the individual village can be easily identified. 4.2 Base map It consists of various features like the road network, settlements, water bodies, canals, railway track, vegetation etc. delineated from the toposheet. The map thus drawn is scanned and digitized to get a digital output. The information content of this map is used as a baseline data to finalize the physical features of other thematic maps. 4.3 Transport Network Map In the study area all the settlements are connected either by Metalled road or Un-Metalled road. Where as, State Highway connects Maripeda. Railway network does not exist in the Maripeda Mandal. The nearest railway station is Khammam, which is at a distance of 18kms SouthEast of Maripeda village. 4.4 Drainage Drainage map is prepared by using Survey of India Topographic maps on 1:50,000. All the streams and tanks existing in the study area are marked in this map. These streams further classified based on stream ordering. Only two minor rivers namely Palleru and Akeru exists [3]. The drainage system existing is dendritic. Tank bunds are also marked in the map. 4.5 Watershed characteristics: The watershed map is prepared in accordance with the National Watershed Atlas and River Basin Atlas of India, 1985. According to this, India is divided into 6 regions out (watershed Atlas of India, 1990) of which the present study area comes under Region-4 and part of basins D, catchment 1,sub- 311 Vol. 2, Issue 1, pp. 309-314

catchment C,D. The study area is under sub-catchment C watersheds (4D1C6,4D1C7) and under D sub-catchment. (4D1D2) are coming under these watersheds 71 sub-watersheds has delineated [4]. 4.6 Slope map Slope classes 1, 2 and 3 are observed in the study area. Most of the study area is covered by nearly level, very gently, gently slope class (92%). Small part of the study area (4%) comes under moderately sloping class 4 and ( 2%) study area comes under the strongly sloping class 5 (IMSD Technical Guidelines, 1995). 4.7 Land Use/Land Cover The land use/land cover categories such as built-up land, agriculture, forest, water body and wastelands have been identified and mapped from the study area (Figure 3). Major part of the study area is covered with single crop and double crop (93%). About (0.015%)of the study area is under built-up land and Industrial area is( 0.017%). From the satellite data the agriculture area (96.05%) could be clearly delineated as four categories, single crop, double crop, fallow land and plantations [5]. Though single crop and double crop has been observed at various parts of the study area and plantations are observed at some places of the study area. Water bodies occupied( 0.18%). About (0.46%) of the study area is under scrub forest and( 4.21%) of area is under wasteland. Under this category land with scrub (3%), land without scrub (0.24%) and barren sheet rock area (0.09%) are observed (Figure 3). Figure 3: Flow chart showing the methodology adopted for the present study 312 Vol. 2, Issue 1, pp. 309-314

4.8 Geomorphology The geomorphological classes observed in the study area are Pediplain with moderate weathering (PPM) (42%), Pediplain with shallow weathering (PPS) (31%), valley (v) (14%), pediment (PD) (8%), pediment inselberg complex (PIC) (2%),inselberg (1%),pediment (1%) and dyke and dyke ridge (0.12%). 4.9 Geology: The study area constitutes mainly a granitic terrain (pink-grey) exposive a variety of archaean granitorides of peniusular gneissic complex (PGC) and schistoic (older metamorphic) rocks. They are intruded by basic dykes (Proterozoic) and covered locally by the deccan traps (upper cretaceous to lower Eocene) [6]. The geological categories observed in the study area are mainly granite (98%), basalt (2%), and some of lineaments, dolerites and pegmatites. 4.10 Soil The specific objectives of soil mapping are identification, characterization and classification of the soils of the area. The soil types identified in the study area are (1) loamy-skelital,mixed, rhodicpaleustalfs (55%). (2) Fine loamy, mixed, fluventicustropepts (10%) (3) Fine, montmorillonitic, typichaplusterts (35%). 4.11 Groundwater potential The groundwater potential map is prepared based on the analysis of various themes such as geomorphology, land use / land cover, lineament, intersection points, drainage pattern, lithological evidences by using converging evidence concept, besides the collateral data obtained from State Groundwater Board with necessary field checks [7]. The groundwater potential map reveals the available quantum of groundwater and is delineated into zones showing high (53%), medium (30%), low (17%), groundwater potential areas. V. CONCLUSIONS AND RECOMMENDATIONS 1. Through the analysis of soils attribute data, it is clear that 39% of the study area is effected by erosion. In future this may lead to sedimentation and other consequential problems to the major water bodies of study area. This could be best controlled by construction of gully control bunds and extensive reforestation or through agricultural soil conservation and management practices. 2. As irrigation water requirement varies with different crops, cropping pattern in the study area is to be changed for optimum utilization of this resource. Crops like pulses, vegetables should be cultivated, which may result in the reduction of water requirement as well as fertilizer and pesticide load in the study area. 3. The three key activities that are essential for the development of a watershed area are, Irrigation management Catchment management Drainage basin monitoring and management To address these three activities planners need physical characteristic information on comprehensive lines. Hence, the present work, concentrated on the development of physical characteristics for this study area.the planners at execution level can rely upon such kind of physical characteristic information system for various other watersheds. 4. This study has been concluded to above stated findings. But this study will be useful as input base line data for models like LWAT (Land and Water Assessment Tool) that give more precise and detailed long term predictions on land and water resources. 313 Vol. 2, Issue 1, pp. 309-314

REFERENCES [1] District Census Handbook of Hyderabad, 1991 Directorate of Census Operations, Andhra Pradesh, Census of India. [2] APHA, AWWA, WPCF, 1998 Standard Methods for the Examination of Water and Wastewater. (20 th edition). American Public Health Association, Washington DC, New York. [3] Tiwari, T.N and Mishra, M, 1985 A preliminary assessment of water quality index to major Indian rivers.indian Journal of Environmental Protection, 5(4), 276-279. [4] Mahuya Das Gupta Adak, Purohit KM, Jayita Datta, 2001 Assessment of drinking water quality of river Brahmani. Indian Journal of Environmental Protection, 8(3), 285-291. [5] Pradhan, S.K., Dipika Patnaik and Rout, S.P, 2001 Water quality index for the ground water in and around a phosphatic fertilizer plant. Indian Journal of Environmental Protection, Vol.21, 355-358. [6] Srivastava, A.K., and Sinha, D.K, 1994 Water Quality Index for river Sai at Rae Bareli for the premonsoon period and after the onset of monsoon. Indian Journal of Environmental Protection, Vol.14, 340-345. [7] Kurian Joseph, 2001 An integrated approach for management of Total Dissolved Solids in reactive dyeing effluents. Proceedings of International Conference on Industrial Pollution and Control Technologies, Hyderabad. Authors A. Sivasankar is working as Assoc. Prof., Deptt. of Civil Engineering., KL University, Green fields, Vaddeswaram, Guntur, A.P, India. He has 14years of research experience & supervised 2 M.Sc & 2 M.Tech Dissertation. He was Principal Investigator DST Sponsored Fast Track Young Scientist Project cost of Rs15,24,000/-. 314 Vol. 2, Issue 1, pp. 309-314