Dynamic Fully-Compressed Suffix Trees

Similar documents
Fast Fully-Compressed Suffix Trees

On Suffix Tree Breadth

First Midterm Examination

Fully-Compressed Suffix Trees

Balanced binary search trees

Week 10: Line Integrals

Lexical Analysis Finite Automate

The Regulated and Riemann Integrals

p-adic Egyptian Fractions

CSCI 340: Computational Models. Transition Graphs. Department of Computer Science

Module 9: Tries and String Matching

Module 9: Tries and String Matching

Harvard University Computer Science 121 Midterm October 23, 2012

Chapter 2 Finite Automata

CS 275 Automata and Formal Language Theory

Uninformed Search Lecture 4

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15

Connected-components. Summary of lecture 9. Algorithms and Data Structures Disjoint sets. Example: connected components in graphs

CMSC 330: Organization of Programming Languages

DATA Search I 魏忠钰. 复旦大学大数据学院 School of Data Science, Fudan University. March 7 th, 2018

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

19 Optimal behavior: Game theory

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

Where did dynamic programming come from?

Succinct Text Indexes on Large Alphabet

Theoretical foundations of Gaussian quadrature

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

1.4 Nonregular Languages

CS 188: Artificial Intelligence Spring 2007

Designing finite automata II

Homework 3 Solutions

Solving the String Statistics Problem in Time O(n log n)

On Determinisation of History-Deterministic Automata.

CS103 Handout 32 Fall 2016 November 11, 2016 Problem Set 7

Parse trees, ambiguity, and Chomsky normal form

Regular Languages and Applications

Chapter 5 Plan-Space Planning

Random subgroups of a free group

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

Minimal DFA. minimal DFA for L starting from any other

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

1 APL13: Suffix Arrays: more space reduction

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

Fingerprint idea. Assume:

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Title. Author(s) 髙木, 拓也. Issue Date DOI. Doc URL. Type. File Information. Studies on Efficient Index Construction for Multiple

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

2.4 Linear Inequalities and Interval Notation

1 Nondeterministic Finite Automata

Java II Finite Automata I

Finite Automata-cont d

Regular expressions, Finite Automata, transition graphs are all the same!!

Computing the Optimal Global Alignment Value. B = n. Score of = 1 Score of = a a c g a c g a. A = n. Classical Dynamic Programming: O(n )

Theory of Computation Regular Languages

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

Section 4: Integration ECO4112F 2011

Alignment of Long Sequences. BMI/CS Spring 2016 Anthony Gitter

Review of basic calculus

Chapter 3 Polynomials

Math 1B, lecture 4: Error bounds for numerical methods

Coalgebra, Lecture 15: Equations for Deterministic Automata

Notes on length and conformal metrics

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

Administrivia CSE 190: Reinforcement Learning: An Introduction

Chapter 14. Matrix Representations of Linear Transformations

1 The Lagrange interpolation formula

APPROXIMATE INTEGRATION

Automata and Languages

Research Article Moment Inequalities and Complete Moment Convergence

Compiler Design. Fall Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Note 12. Introduction to Digital Control Systems

Let's start with an example:

Foundations of XML Types: Tree Automata

Strong Bisimulation. Overview. References. Actions Labeled transition system Transition semantics Simulation Bisimulation

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

1 From NFA to regular expression

CHAPTER 1 Regular Languages. Contents. definitions, examples, designing, regular operations. Non-deterministic Finite Automata (NFA)

Closure Properties of Regular Languages

Generating finite transformation semigroups: SgpWin

Math 61CM - Solutions to homework 9

Formal languages, automata, and theory of computation

1.3 Regular Expressions

Lecture 08: Feb. 08, 2019

Math& 152 Section Integration by Parts

3 Regular expressions

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA

A Symbolic Approach to Control via Approximate Bisimulations

NON-DETERMINISTIC FSA

Lesson 1: Quadratic Equations

Name Ima Sample ASU ID

Gold s algorithm. Acknowledgements. Why would this be true? Gold's Algorithm. 1 Key ideas. Strings as states

Fundamentals of Computer Science

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

QUADRATURE is an old-fashioned word that refers to

GNFA GNFA GNFA GNFA GNFA

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Transcription:

Motivtion Dynmic FCST s Conclusions Dynmic Fully-Compressed Suffix Trees Luís M. S. Russo Gonzlo Nvrro Arlindo L. Oliveir INESC-ID/IST {lsr,ml}@lgos.inesc-id.pt Dept. of Computer Science, University of Chile gnvrro@dcc.uchile.cl 19th Annul Symposium on Comintoril Pttern Mtching Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions Outline 1 Motivtion The Prolem We Studied Previous Work nd FCST s Fully-Compressed Suffix Tree Bsics 2 Dynmic FCST s The prolem Dynmic CSA s Updting the smpling 3 Conclusions Summry Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Suffix Trees re Importnt 28 min Suffix trees re importnt for severl string prolems: pttern mtching longest common sustring super mximl repets ioinformtics pplictions etc Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Suffix Trees re Importnt 27 min Exmple (Suffix Tree for ) 0 1 2 3 4 5 6 A: 6 4 0 5 3 2 1 Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Representtion Prolems 26 min Prolem (Suffix Trees need too much spce) Pointer sed representtions require O(n log n) its. This is much lrger thn the indexed string. Stte of the rt implementtions require [8, 10]n log σ its. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Compressed Representtions 25 min Sdkne proposed wy to represent compressed suffix trees, in nh k + 6n + o(n log σ) its. Compressed Suffix Tree Tree Structure + Compressed Index Blnced prentheses representtion Nodes represented s intervls Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Compressed Representtions 25 min A dynmic representtion, y Chn et l., requires nh k + Θ(n) + o(n log σ) its nd suffers n O(log n) slowdown. Compressed Suffix Tree Tree Structure + Compressed Index Blnced prentheses representtion Nodes represented s intervls Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Compressed Representtions 25 min The Fully-Compressed suffix tree representtion requires only nh k + o(n log σ) its. The representtion uses the following scheme: Fully-Compressed Suffix Tree Tree Structure + Compressed Index Smpling LSA Nodes represented s intervls Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Compressed Representtions 25 min We present dynmic FCST s tht require only nh k + o(n log σ) its with O(log n) slowdown. Fully-Compressed Suffix Tree Tree Structure + Compressed Index Smpling LSA Nodes represented s intervls Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Node Representtion 23 min A node represented s n intervl of leves of suffix tree. Exmple Intervl [3, 6] represents node. 0 1 2 3 4 5 6 A: 6 4 0 5 3 2 1 Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Compressed Indexes 22 min Compressed indexes re compressed representtions of the leves of suffix tree. Their success relies on: Succinct structures, sed on RANK nd SELECT. Dt compression, tht represent T in O(uH k ) its. Exmples FM-index, Compressed Suffix Arrys, LZ-index, etc. Sdkne used compressed suffix rrys. We need compressed index tht supports ψ nd LF. For exmple the Alphet-Friendly FM-Index. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Suffix Tree self-similrity LCA nd SLINK 21 min Lemm When LCA(v, v ) ROOT we hve tht: SLINK(LCA(v, v )) = LCA(SLINK(v), SLINK(v )) α X α Y v Z v Y Z ψ ψ This self-similrity explins why we cn store only some nodes. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Smpling 18 min FCST s use smpling such tht in ny sequence v SLINK(v) SLINK(SLINK(v)) SLINK(SLINK(SLINK(v)))... of size δ there is t lest one smpled node. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Fundmentl lemm 17 min Lemm If SLINK r (LCA(v, v )) = ROOT, nd let d = min(δ, r + 1). Then SDEP(LCA(v, v )) = mx 0 i<d {i + SDEP(LCSA(SLINK i (v), SLINK i (v )))} Proof. SDEP(LCA(v, v )) = i + SDEP(SLINK i (LCA(v, v ))) = i + SDEP(LCA(SLINK i (v), SLINK i (v ))) i + SDEP(LCSA(SLINK i (v), SLINK i (v ))) The lst inequlity is n equlity for some i d. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Fundmentl lemm 17 min Lemm If SLINK r (LCA(v, v )) = ROOT, nd let d = min(δ, r + 1). Then SDEP(LCA(v, v )) = mx 0 i<d {i + SDEP(LCSA(SLINK i (v), SLINK i (v )))} Proof. SDEP(LCA(v, v )) = i + SDEP(SLINK i (LCA(v, v ))) = i + SDEP(LCA(SLINK i (v), SLINK i (v ))) i + SDEP(LCSA(SLINK i (v), SLINK i (v ))) The lst inequlity is n equlity for some i d. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Fundmentl lemm 17 min Lemm If SLINK r (LCA(v, v )) = ROOT, nd let d = min(δ, r + 1). Then SDEP(LCA(v, v ))? mx 0 i<d {i + SDEP(LCSA(SLINK i (v), SLINK i (v )))} Proof. SDEP(LCA(v, v )) = i + SDEP(SLINK i (LCA(v, v ))) = i + SDEP(LCA(SLINK i (v), SLINK i (v ))) i + SDEP(LCSA(SLINK i (v), SLINK i (v ))) The lst inequlity is n equlity for some i d. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Fundmentl lemm 17 min Lemm If SLINK r (LCA(v, v )) = ROOT, nd let d = min(δ, r + 1). Then SDEP(LCA(v, v ))? mx 0 i<d {i + SDEP(LCSA(SLINK i (v), SLINK i (v )))} Proof. SDEP(LCA(v, v )) = i + SDEP(SLINK i (LCA(v, v ))) = i + SDEP(LCA(SLINK i (v), SLINK i (v ))) i + SDEP(LCSA(SLINK i (v), SLINK i (v ))) The lst inequlity is n equlity for some i d. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Fundmentl lemm 17 min Lemm If SLINK r (LCA(v, v )) = ROOT, nd let d = min(δ, r + 1). Then SDEP(LCA(v, v )) mx 0 i<d {i + SDEP(LCSA(SLINK i (v), SLINK i (v )))} Proof. SDEP(LCA(v, v )) = i + SDEP(SLINK i (LCA(v, v ))) = i + SDEP(LCA(SLINK i (v), SLINK i (v ))) i + SDEP(LCSA(SLINK i (v), SLINK i (v ))) The lst inequlity is n equlity for some i d. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Fundmentl lemm 17 min Lemm If SLINK r (LCA(v, v )) = ROOT, nd let d = min(δ, r + 1). Then SDEP(LCA(v, v )) = mx 0 i<d {i + SDEP(LCSA(SLINK i (v), SLINK i (v )))} Proof. SDEP(LCA(v, v )) = i + SDEP(SLINK i (LCA(v, v ))) = i + SDEP(LCA(SLINK i (v), SLINK i (v ))) i + SDEP(LCSA(SLINK i (v), SLINK i (v ))) The lst inequlity is n equlity for some i d. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The Prolem Previous nd FCST s FCST sics Kernel Opertions 12 min With the previous lemm FCST s compute the following opertions: SDEP(v) = SDEP(LCA(v, v)) = mx 0 i<d {i + SDEP(LCSA(ψ i (v l ), ψ i (v r )))}. LCA(v, v ) = LF(v[0..i 1], LCSA(ψ i (min{v l, v l }), ψi (mx{v r, v r }))), for the i in the lemm. SLINK(v) = LCA(ψ(v l ), ψ(v r )) Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Dynmic FCST s 11 min Prolem (FCST s re sttic) How to insert or remove text T from FCST tht is indexing collection C of texts? Use Weiner s lgorithm or delete suffixes from the lrgest to the iggest. Updte the CSA nd the smpling. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Dynmic FCST s 11 min Prolem (FCST s re sttic) How to insert or remove text T from FCST tht is indexing collection C of texts? Use Weiner s lgorithm or delete suffixes from the lrgest to the iggest. Updte the CSA nd the smpling. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Dynmic FCST s 11 min Prolem (FCST s re sttic) How to insert or remove text T from FCST tht is indexing collection C of texts? Use Weiner s lgorithm or delete suffixes from the lrgest to the iggest. Updte the CSA nd the smpling. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Dynmic FCST s 10 min Use dynmic CSA s. Theorem (Mäkinen, Nvrro) A dynmic CSA over collection C cn e stored in nh k (C) + o(n log σ) its, with times t = Ψ = O(((log σ log n) 1 + 1) log n), Φ = O((log σ log n) log 2 n), nd inserting/deleting texts T in O( T (t + Ψ)). Lets tke closer look t the smpling. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Dynmic FCST s 10 min Use dynmic CSA s. Theorem (Mäkinen, Nvrro) A dynmic CSA over collection C cn e stored in nh k (C) + o(n log σ) its, with times t = Ψ = O(((log σ log n) 1 + 1) log n), Φ = O((log σ log n) log 2 n), nd inserting/deleting texts T in O( T (t + Ψ)). Lets tke closer look t the smpling. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 9 min How do we gurntee the smpling condition, with t most O(n/δ) nodes? We use purely conceptul reverse tree. Definition The reverse tree T R is the miniml leled tree tht, for every node v of suffix tree, contins node v R denoting the reverse string of the pth-lel of v. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 9 min How do we gurntee the smpling condition, with t most O(n/δ) nodes? We use purely conceptul reverse tree. Definition The reverse tree T R is the miniml leled tree tht, for every node v of suffix tree, contins node v R denoting the reverse string of the pth-lel of v. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 9 min How do we gurntee the smpling condition, with t most O(n/δ) nodes? We use purely conceptul reverse tree. Definition The reverse tree T R is the miniml leled tree tht, for every node v of suffix tree, contins node v R denoting the reverse string of the pth-lel of v. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 8 min Exmple (Suffix Tree for nd its reverse tree) Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees 6 6 2 2 1 3 4 5 0 0 1 3 4 5

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 8 min Exmple (Suffix Tree for nd its reverse tree) 0 0 1 2 3 4 5 6 3 1 4 5 6 2 Note tht the SLINK s correspond to moving upwrds on the reverse tree. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 8 min Exmple (Suffix Tree for nd its reverse tree) 0 0 1 2 3 4 5 6 3 1 4 5 6 2 We smple the nodes for which TDEP(v R ) δ/2 0 nd HEIGHT(v R ) δ/2. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 8 min Exmple (Suffix Tree for nd its reverse tree) 0 0 1 2 3 4 5 6 3 1 4 5 6 2 Wht hppens when nodes re inserted or deleted? Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 8 min Exmple (Suffix Tree for nd its reverse tree) 0 1 3 4 5 6 0 3 1 4 5 6 Only the leves of the reverse tree chnge. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 8 min Exmple (Suffix Tree for nd its reverse tree) 0 3 1 4 5 0 1 3 4 5 This smpling does not respect the HEIGHT(v R ) δ/2 condition. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 8 min Exmple (Suffix Tree for nd its reverse tree) 0 3 1 4 5 0 1 3 4 5 To insert node we do n upwrds scn nd smple nodes if necessry. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 8 min Exmple (Suffix Tree for nd its reverse tree) 0 1 3 4 5 6 0 3 1 4 5 6 To insert node we do n upwrds scn nd smple nodes if necessry. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 8 min Exmple (Suffix Tree for nd its reverse tree) 0 1 3 4 5 6 0 3 1 4 5 6 To insert node we do n upwrds scn nd smple nodes if necessry. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 8 min Exmple (Suffix Tree for nd its reverse tree) 0 3 1 4 5 0 1 3 4 5 To delete node we keep reference counters to gurntee tht it is sfe to unsmple node. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Reverse tree 8 min Exmple (Suffix Tree for nd its reverse tree) 0 3 1 4 5 0 1 3 4 5 To delete node we keep reference counters to gurntee tht it is sfe to unsmple node. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Other contriutions 2 min We study the prolem of chnging logn. We give new wy to compute LSA. We otin generlized rnching, tht determines v 1.v 2 for nodes v 1 nd v 2 nd cn e computed directly over CSA s in the smple time s regulr rnching. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Other contriutions 2 min We study the prolem of chnging logn. We give new wy to compute LSA. We otin generlized rnching, tht determines v 1.v 2 for nodes v 1 nd v 2 nd cn e computed directly over CSA s in the smple time s regulr rnching. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions The prolem Dynmic CSA Updting the smpling Other contriutions 2 min We study the prolem of chnging logn. We give new wy to compute LSA. We otin generlized rnching, tht determines v 1.v 2 for nodes v 1 nd v 2 nd cn e computed directly over CSA s in the smple time s regulr rnching. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions Summry Summry 1 min We presented dynmic fully-compressed suffix trees tht: occupy uh k + o(u log σ) its. supports usul opertions in resonle time. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions Summry Acknowledgments 0 min Veli Mäkinen nd Johnnes Fisher for pointing out the generlized rnching prolem. FCT grnt SFRH/BPD/34373/2006 nd project ARN, PTDC/EIA/67722/2006. Millennium Institute for Cell Dynmics nd Biotechnology, Grnt ICM P05-001-F, Midepln, Chile. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees

Motivtion Dynmic FCST s Conclusions Summry Acknowledgments 0 min Thnks for listening. Luís M. S. Russo, Gonzlo Nvrro, Arlindo L. Oliveir Dynmic Fully-Compressed Suffix Trees