Chandra-HETGS Observations of LMC X-1. Michael Nowak, Ron Remillard, Norbert Schulz (MIT-Kavli) & Jörn Wilms (University of Bamberg)

Similar documents
Spatially Resolved Chandra HETG Spectroscopy of the NLR Ionization Cone in NGC 1068

Deciphering the accretion structure in Vela X-1

X-ray spectroscopy of low-mass X-ray binaries

Formation and Evolution. of the SS 433 Jets. Herman L. Marshall (MIT Kavli Institute) Sebastian Heinz (University Wisconsin)

X-ray Binaries: Spectroscopy & Variability

The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered?

Measuring the Spin of the Accreting Black Hole In Cygnus X-1

V5116 Sgr (Nova Sgr 2005b): an eclipsing supersoft postoutburst nova?

Simultaneous X-ray and Radio Observations of Seyferts, and Disk-Jet Connections

BLACK HOLES (AND NEUTRON STARS) IN X-RAY BINARIES: Evolution and Accretion states TEO MUÑOZ DARIAS MARIE CURIE FELLOW. Oxford Astrophysics

Coronal geometry at low mass- accretion rates from XMM and NuSTAR spectra. Felix Fürst Caltech for the NuSTAR AGN physics and binaries teams

Opacity and Optical Depth

High-resolution X-ray Spectroscopy of the Black Hole Cygnus X-1 with the Chandra X-ray observatory

Observational appearance of strong gravity in X-rays

Predicting Jets in Cygnus X-2

X-ray Emission from O Stars. David Cohen Swarthmore College

Monte Carlo Simulator to Study High Mass X-ray Binary System

Accretion on Black Holes: Testing the Lamp Post Geometry Thomas Dauser Remeis Observatory Bamberg & ECAP

arxiv:astro-ph/ v1 17 Dec 2001

v Characteristics v Possible Interpretations L X = erg s -1

Ultra Luminous X-ray sources ~one of the most curious objects in the universe~

Extinction & Red Clump Stars

Measuring the distances, masses and radii of neutron stars

The Chandra Survey of Outflows in AGN with Resolved Spectroscopy (SOARS)

4U : a well-hidden pearl

Randall Smith (CfA) Collaborators: N. Brickhouse, A. Foster, H. Yamaguchi (CfA), J. Wilms (Erlangen), Li Ji (PMO)

A new fast wind in a star forming galaxy

X-ray bursts and the equation of state

The High Energy Transmission Grating Spectrometer

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B.

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Sources of radiation

X-raying galactic feedback in nearby disk galaxies. Q. Daniel Wang University of Massachusetts

Problem Set 2 Solutions

A confirmed stellar-mass ULX with recurrent X-ray occultations from its precessing disk

Jets, corona and accretion disk in the black hole source SS433: Monte-Carlo simulations

X-ray Outbursts from Black Hole Binaries. Ron Remillard Center for Space Research, MIT

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Measurements of Neutron Star Masses and Radii from Thermonuclear X-ray Bursts. Tolga GÜVER İstanbul University

arxiv: v1 [astro-ph.he] 1 Apr 2016

Crossing the Eddington limit: examining disc spectra at high accretion rates. Andrew Sutton

Nuclear X-ray Emission and Mass Outflow From Broad Lined Radio Galaxies (Lorentz Center, Leiden 2009)

X-ray Universe

Thermal pressure vs. magnetic pressure

TEMA 6. Continuum Emission

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Detailed Study of the X-ray Absorption in the ISM

Dan Evans (Harvard), Julia Lee (Harvard), Jane Turner (UMBC/GSFC), Kim Weaver (GSFC), Herman Marshall (MIT) NGC 2110 Spectroscopy

The total luminosity of a disk with the viscous dissipation rate D(R) is

X-ray data analysis. Andrea Marinucci. Università degli Studi Roma Tre

arxiv: v1 [astro-ph] 6 Sep 2007

Broadband X-ray emission from radio-quiet Active Galactic Nuclei

Infrared Spectroscopy of the Black Hole Candidate GRO J

This is a vast field - here are some references for further reading

X-ray Spectroscopy of Massive Star Winds: Shocks, Mass-Loss Rates, and Clumping

PoS(MQW7)007. X-ray spectral states of microquasars

X-ray Emission from Active Galactic Nuclei. Gulab Chand Dewangan IUCAA

V2487 Oph 1998: a puzzling recurrent nova observed with XMM-Newton

X-raying Galaxy Ecosystems of Disk Galaxies. Q. Daniel Wang IoA/Cambridge University University of Massachusetts

Broad X-ray Absorption lines from the Wind in PDS 456

Giant Flares and Offstates

The Be/X-ray binary V

Soft X-ray Emission Lines in Active Galactic Nuclei. Mat Page

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Prof. Jeff Kenney Class 4 May 31, 2018

Lecture 3: Emission and absorption

Active Galactic Nuclei - Zoology

Hot-subdwarf stars: a new class of X-ray sources

4U E. Bozzo. M. Falanga, A. Papitto, L. Stella, R. Perna, D. Lazzati G. Israel, S. Campana, V. Mangano, T. Di Salvo, L.

ASTRO-H Studies of Accretion Flow onto Supermassive Black Hole

X-ray and Gamma-ray. Emission Pulsars and Pulsar Wind Nebulae. K.S. Cheng Department of Physics University of Hong Kong Hong Kong, China

A propelling neutron star in the enigmatic Be-star γ Cassiopeia

Understanding the nature of ULX with SIMBOL-X

Cooling Limits for the

2 The solar atmosphere

Neutron star mass and radius constraints from X-ray bursts, accreting millisecond pulsars and X-ray polarization. Juri Poutanen

Using Microlensing to Probe Strong Gravity Near Supermassive Black Holes

NuSTAR spectral analysis of the two bright Seyfert 1 galaxies: MCG and NGC Alessia Tortosa Università Roma Tre

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Compact Stars. Lecture 4

Propagation of very high energy γ-rays inside massive binaries LS 5039 and LSI

Dust. The four letter word in astrophysics. Interstellar Emission

A relativistically smeared line profile in the spectrum of the bright Z-source GX 340+0

SOFT X-RAY LAGS AND THE CORRELATION WITH BH MASS IN RADIO QUIET AGN

PoS(INTEGRAL 2012)049

January 20, Doctoral Thesis Defense. Jeremy Schnittman. Radiation Transport Around Kerr Black Holes

X-ray Observations of Nearby Galaxies

Andy Ptak NASA/GSFC Active Galactic Nuclei

Tidal Disruption Events

Optical and infrared emission of X-ray novae S.A.Grebenev, A.V.Prosvetov, R.A.Burenin

Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses. E. Pian, R. Falomo, A.

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.5: Optical Absorption. Ron Reifenberger Professor of Physics Purdue University

Astronomy 421. Lecture 14: Stellar Atmospheres III

THE INVERSE-COMPTON X-RAY SIGNATURE OF AGN FEEDBACK

An explanation for the soft X-ray excess in AGN. Jamie Crummy collaborators: Andy Fabian, Luigi Gallo, Randy Ross Suzaku Team

Active Galactic Nuclei

NASA Public Access Author manuscript Astrophys J. Author manuscript; available in PMC 2016 September 15.

NuSTAR + XMM Observations of NGC 1365: A Constant Inner Disc

Spectral Observations of Micro Quasar GRO J in 2005 Outburst

PHOTOIONIZATION X-RAY BINARIES INSTABILITY OF WINDS IN STEFANO BIANCHI. June 8 th 2017 The X-ray Universe 2017 Rome, Italy

Transcription:

Chandra-HETGS Observations of LMC X-1 Michael Nowak, Ron Remillard, Norbert Schulz (MIT-Kavli) & Jörn Wilms (University of Bamberg)

One of the few persistent BHC HMXB: Focused Wind-Fed Soft X-ray Dominated State Line of Sight will Often Intersect Secondary Wind

Elmegreen, Kim, Staveley-Smith (2001)

Elmegreen, Kim, Staveley-Smith (2001) 21 cm Map of LMC LMC X-1 Sits Near 30 Doradus Star Forming Region

Mass: 10.9 +/- 1.6 Solar Masses, Inclination 36. o 4 +/- 1. o 9 (Orosz et al. 2009) Distance: 48.1 kpc Absorbed 0.5 8 kev Flux 10% LEdd Orbital Period 3.909 Days, O7/8 Giant Companion Sits 0.5 o from 30 Doradus Star Forming Region => Larger column than much of the rest of the LMC (e.g., > LMC X-3)

Performed 10 Chandra-HETGS Observations over ~ 1 month: 150 ksec Study Accretion Flow Emission Primarily the Accretion Disk Direct Measure of Absorption Edges Spectroscopic Signatures of Secondary Study Orbital Variations?

Fit: Absorbed, Comptonized Disks 2 20 0 20 F (ergs cm 2 s 1 ) 10 12 10 11 10 10 0.5 1 2 5 Energy (kev)

Fit: Absorbed, Comptonized Disks F (ergs cm 2 s 1 ) 10 12 10 11 10 10 Disk 2 20 0 20 0.5 1 2 5 Energy (kev)

Fit: Absorbed, Comptonized Disks F (ergs cm 2 s 1 ) 10 12 10 11 10 10 Disk Corona 2 20 0 20 0.5 1 2 5 Energy (kev)

Fit: Absorbed, Comptonized Disks F (ergs cm 2 s 1 ) 10 12 10 11 10 10 Disk ISM & Local Absorption Corona 2 20 0 20 0.5 1 2 5 Energy (kev)

Fit: Absorbed, Comptonized Disks F (ergs cm 2 s 1 ) 10 12 10 11 10 10 Disk ISM & Local Absorption Corona Secondary Atmosphere 2 20 0 20 0.5 1 2 5 Energy (kev)

Fit: Absorbed, Comptonized Disks F (ergs cm 2 s 1 ) 10 12 10 11 10 10 No Idea Disk ISM & Local Absorption Corona Secondary Atmosphere 2 20 0 20 0.5 1 2 5 Energy (kev)

Emission from Secondary S XV Si XIV Si XIII F (ergs cm 2 s 1 ) 2 10 10 Fe XXIV? Mg XII 2 0 20 40 5 6 7 8 9 10 Wavelength (Å)

Velocities are Inconclusive: 500 km s -1 Widths: 500 km s -1 No Evidence for Orbital Phase-Dependence This is in contrast to Cyg X-1 Hard State: Orbital Phase-Dependence Soft State: No Lines (Totally Ionized Wind) See Poster # 18 by Ivica Miskovicová

Absorption Edge Structure 2 X2 S1 C1 S2 S3 X1 λ F λ [Å photons/s/cm 2 /Å] 0.015 0.02 0.025 0.03 0.035 Ne IX 1s 2 > 1s 2p Ne I edge Column density N H [10 22 cm 2 ] Ne I 1s > 3p Ne II 1s > 2p 13 14 15 16 Wavelength λ [Å] 1.5 1 1.3 1.2 1.1 1 1.3 1.2 1.1 1 1.3 1.2 1.1 1 diskbb + powerlaw eqpair simpl ( kerrbb ) simpl ( diskbb ) 0 0.2 0.4 0.6 0.8 Orbital phase Hanke et al. (2009) - RGS, Epic, Swift, Chandra

Absorption Edge Structure 2 10 11 5 10 11 F (ergs cm 2 s 1 ) Ne IX Ne III Ne II Chandra-HETGS 2 5 0 5 13.5 14 14.5 15 15.5 Wavelength (Å)

Absorption Edge Structure F (ergs cm 2 s 1 ) 5 10 12 10 11 2 10 11 5 10 11 Chandra-HETGS Fe L 2 5 0 14 15 16 17 18 Wavelength (Å)

Absorption vs. Orbital Phase N Ne (10 18 cm 2 ) 0.5 1 1.5 2 0.2 0.4 0.6 0.8 Orbital Phase

Absorption vs. Orbital Phase 2 X2 S1 C1 S2 S3 X1 N Ne (10 18 cm 2 ) 0.5 1 1.5 2 Column density N H [10 22 cm 2 ] 1.5 1 1.3 1.2 1.1 1 1.3 1.2 1.1 1 1.3 diskbb + powerlaw eqpair simpl ( kerrbb ) 1.2 0.2 0.4 0.6 0.8 Orbital Phase 1.1 1 simpl ( diskbb ) 0 0.2 0.4 0.6 0.8 Orbital phase

Shakura-Sunyaev Disk F = 3Ṁ 8π Ω2 1 β Ri R 1/2

Shakura-Sunyaev Disk Novikov & Thorne F = 3Ṁ 8π Ω2 Spin: a* = 0 1 1 β Ri R 1/2

An Aside on Thermodynamic Efficiency of Radiative Processes Blackbody radiation is the most thermodynamically efficient N BB T 3 BB,y 4kT c m e c 2 max(τ es, τ 2 es) For the same average photon energy, and same total luminosity, non-thermal requires greater area

An Aside on Thermodynamic Efficiency of Radiative Processes Also true for atmospheric electron scattering: Modified Blackbody F σt 4 κr κ es 1/2, κ R κ es Color Correction : TC = fcteff, fc > 1, Area scales as fc 4 Essentially any correction means the area is bigger than required for just blackbody

LMC X-1 HETGS Spectra F (ergs cm 2 s 1 ) 10 11 10 10 0.5 1 2 5 Energy (kev)

LMC X-1 HETGS Spectra F (ergs cm 2 s 1 ) 10 11 10 10 Note Lack of Differences 0.5 1 2 5 Energy (kev)

Contrast to 4U 1957+11 F (ergs cm 2 s 1 ) 5 10 11 10 10 2 10 10 5 10 10 Suzaku Observations (Nowak et al. 2011) 0.5 1 2 5 Energy (kev)

Soft State = Constant Radius r in cos 1/2 θ [km] 10 20 30 40 50 kt in [kev] 1.2 1.0 0.8 0.6 d) LMC X-3 kt disk (ev) 1200 1400 1600 4U 1957+11 0.4 0 20 40 60 80 100 A disk 2 10 4 5 10 4 Disk Normalization RXTE Observations (Wilms et al. 2001, Nowak et al. 2008)

Soft State = Constant Radius r in cos 1/2 θ [km] 10 20 30 40 50 kt in [kev] 1.2 1.0 0.8 0.6 d) LMC X-3 kt disk (ev) 1200 1400 1600 4U 1957+11 0.4 0 20 40 60 80 100 A disk 2 10 4 5 10 4 Disk Normalization RXTE Observations (Wilms et al. 2001, Nowak et al. 2008)

Chandra: LMC X-1 kt disk (ev) 750 800 850 900 (RXTE the same) 10 3 1.5 10 3 2 10 3 Disk Normalization (Wilms et al. 2001, MNRAS, 320; Nowak et al. in prep)

1.0 // a * = cj/gm 2 0.95 0.9 a a =0.938 ± 0.020 (std. dev.) 0.85 // 1996 1997 1998 1999 2004 2005 1 0.95 0.9 Observation Time (a) Gou et al. (2009) - Spin fits really are a comment on emitting area for a given fitted temperature, small emitting area 0.85 RXTE Data 0.5 1 1.5 2 M

Chandra: LMC X-1 kt disk (ev) 750 800 850 900 (RXTE the same) 10 3 1.5 10 3 2 10 3 Disk Normalization (Wilms et al. 2001, MNRAS, 320; Nowak et al. in prep)

Chandra: LMC X-1 (RXTE the same) kt disk (ev) 750 800 850 900 10 3 1.5 10 3 2 10 3 Disk Normalization (Wilms et al. 2001, MNRAS, 320; Nowak et al. in prep)

Is This Because it s Wind-Fed? Beloborodov & Illiaronov (2001)

Summary See Emission Lines at All Orbital Phases, Despite High, Soft Flux => Strong Wind See Absorption Stronger than ISM, with Large Variability => Strong Wind Disk Has a Small, and Highly Variable, Emitting Area => Strong Wind?

Extra Slides

N Ne (10 18 cm 2 ) 0.5 1 1.5 2 1.25 1.3 1.35 1.4 1.45 N H (10 22 cm 2 )

isk-absorption Correlations kt disk (ev) 750 800 850 900 N H (10 22 cm 2 ) 1.3 1.35 1.4 1.45 1.3 1.35 1.4 1.45 N H (10 22 cm 2 ) 10 3 1.5 10 3 2 10 3 Disk Normalization

Disk-Corona Correlations Disk Normalization 10 3 1.5 10 3 2 10 3 kt disk (ev) 750 800 850 900 0.5 1 Compactness, l h /l s 0.5 1 Compactness, l h /l s