Long-term earthquake forecast

Similar documents
Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Toward automatic aftershock forecasting in Japan

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Introduction to Multi-hazard Risk-based Early Warning System in Japan

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

Challenges for Forecasting Size and Time for Future Great Earthquakes in Subduction Zone

京都 ATLAS meeting 田代. Friday, June 28, 13

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

apanese Nationwide Earthquake and Tsunami Observation Network Operated by NIED

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

GRASS 入門 Introduction to GRASS GIS

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

Taking an advantage of innovations in science and technology to develop MHEWS

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Is the 2006 Yogyakarta Earthquake Related to the Triggering of the Sidoarjo, Indonesia Mud Volcano?

The Centenary of the Omori Formula for a Decay Law of Aftershock Activity

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

October 7, Shinichiro Mori, Associate Professor

中村洋光 Hiromitsu Nakamura 防災科学技術研究所 National Research Institute for Earth Science and Disaster Prevention, Japan (NIED) Outline

Analysis of shale gas production performance by SGPE

Kyoko Kagohara 1, Tomio Inazaki 2, Atsushi Urabe 3 and Yoshinori Miyachi 4 楮原京子

Hypocenter Distribution of Deep Low-frequency Tremors in Nankai Subduction Zone, Japan

The unification of gravity and electromagnetism.

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Detection of anomalous seismicity as a stress change sensor

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

日本政府 ( 文部科学省 ) 奨学金留学生申請書

EU 向けに輸出される食品等に関する証明書の発行に係る事務処理要領 ( 国際 ) 通知に基づき 欧州連合 ( 以下 EU という ) へ輸出される食品及び飼料の証明書の発行条件及び手続きを定めるものとする

Development of Advanced Simulation Methods for Solid Earth Simulations

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

XENON SHORT ARC LAMPS キセノンショートアークランプ

The cause of the east west contraction of Northeast Japan

2011/12/25

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

低温物質科学研究センター誌 : LTMセンター誌 (2013), 23: 22-26

A method for estimating the sea-air CO 2 flux in the Pacific Ocean

Product Specification

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

The great earthquakes that have shaped Japan 日本に大きな影響を与えた地震

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

Yutaka Shikano. Visualizing a Quantum State

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

Adaptation Oriented Simulations for Climate Variability

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

Illustrating SUSY breaking effects on various inflation models

東ソー株式会社 - 明日のしあわせを化学する - TOSOH CORPORATION The Chemistry of Innovation. TOSOH CORPORATION The Chemistry of Innovation

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Damage of Infrastructures due to 2011 Great East Japan Earthquake

FDM Simulation of Broadband Seismic Wave Propagation in 3-D Heterogeneous Structure using the Earth Simulator

SML-811x/812x/813x Series

Absolute Calibration for Brewer Spectrophotometers and Total Ozone/UV Radiation at Norikura on the Northern Japanese Alps

Japanese Earthquake Researches for Seismic and Tsunami Disaster Resilience

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

Seasonal Variations of Global, Reflected, and Diffuse Spectral UV Observations based on Brewer Spectrophotometers at Tsukuba, 2004 to 2012

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

A. Talbi. J. Zhuang Institute of. (size) next. how big. (Tiampo. likely in. estimation. changes. method. motivated. evaluated

ISSUE 2: TEMPORAL DEPENDENCY?

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

Space-time ETAS models and an improved extension

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

Resolving the build-up of galaxies with AO

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される

Determination of risk-based warning criteria

UTokyo OCW. Copyright 2015, The University of Tokyo / UTokyo OCW The Global Focus on Knowledge Lecture Series Copyright 2015, Taro Toyoizumi

SOLID STATE PHYSICAL CHEMISTRY

高エネルギーニュートリノ : 理論的な理解 の現状

NEW Ó Ó Ó Ó *VENT DETAIL X2 KNIGHT RIDER DARK SMOKE (C00) X2 GREY MATTER J.BLUE STEEL (C04) X2 INVERSE J.RED ION (C05) *ボーナスレンズ J.

XAFS Spectroscopy X-ray absorption fine structure

Advanced School on Direct and Inverse Problems of Seismology

Global Spectral UV in Recent 6 Years and Test Observation of Diffuse Spectral UV with Brewer Spectrophotometer at Rikubetsu, Central Hokkaido

Future Change Storm Surge based on Multi-Scenario and Multi-Regional Climate Model Ensemble Experiments

An Analysis of Stochastic Self-Calibration of TDC Using Two Ring Oscillators

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

Advanced 7 Bio-Inspired System

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

Hiroshi Ikeda a, *, Akiko Shimizu a, Makoto Ogawa b, Yasushi Ibaragi b and Shinobu Akiyama c : Lectotypification of Glaziocharis abei (Burmanniaceae)

External Review Report for Earthquake Research Institute The University of Tokyo 外部評価報告書. September 2014 平成 26 年 9 月 東京大学地震研究所

Transcription:

演 The M9 Tohoku-Oki Earthquake and Statistical Seismology Yosihiko Ogata, Institute of Statistical Mathematics 1.Long-term Probability forecasting and repeating earthquakes 2.Prediction and diagnostic analysis of seismic activity 3.Discrimination of foreshocks and their operational forecasting 30 years after Long-term earthquake forecast The Earthquake Research Committee (ERC) of Japan opens the probabilities that earthquakes will occur in the future at main active faults and subduction-zones in Japan to the public. >90% Long-term evaluation of the subduction-zones Long-term evaluation of the main active faults?% >90% <90% 20% <7% 90%

The main focal area of major Earthquakes From Sanriku-Oki to Boso-Oki (ERC, 1999) Miyagi-Ken-Oki Earthquake + f ( x) Time (year) Renewal process models t last f( t tlast ) ( t History) ( ttlast ) 1 F( t t ) last t 30 years probability Present time f( t tlast ) ( ttlast ) 1 F( t t ) a 30 a ( t t ) dt last last What is the BPT renewal process? Probabilistic model for earthquake generation Brownian relaxation oscillator process t last Time(years) Active faults a a+30 30 years surviving probab. = exp ( Area of ) Fault 1 Fault 2 Fault 3 Fault 4 Fault n present Brownian motion with drift λ S(t): Stress accumulation W(t): Standard Brownian motion λ: Loading rate sf σ: Perturbation rate sf: Failure state s0 s0:ground state S(t) Earthquake Recurrence interval (Brownian passage time)

Probability density function What is the BPT renewal process? Brownian Passage Time (BPT) distribution Recurrence interval ( Brownian passage time ) μ Unknown parameters Mean Coefficient of variation α sf s0 Earthquake Recurrence interval (Brownian passage time) Forecasting method by ERC Predictive distribution for interval time from the latest earthquake to the next earthquake Plug-in predictive density MLE from 4 active faults where a lot of earthquakes turned out. or V:slip velocity Mean of past intervals X = (X1 Xn) U:slip size per one earthquake Bayesian predictive density Proposal S. Nomura(SOKENDAI D3) Predictive distribution for interval time from the latest earthquake to the next earthquake Estimation of prior distribution Fault 1 Fault 2 Fault 3 Fault 4 Fault n 現在 Probability density S. Nomura(SOKENDAI D3) μ/t (gamma distribution) posterior density prior density likelihood (BPT renewal process) Merits of proposal method Its predictive performance will be more stable than plug-in methods. Both slip data T=U / V and past intervals X=(X1,,Xn) are used. The estimation of α is not fixed and different among active faults. ABIC and estimated prior distribution Lognormal Gamma Weibull Exp Uniform Lognormal 246.62 245.27 244.50 263.00 249.82 Gamma 245.78 244.44 243.67 262.66 249.94 Weibull 246.02 244.66 243.88 262.97 250.46 Exp 268.67 267.38 266.63 285.84 275.17 Uniform 251.86 250.48 249.69 268.92 257.63 Probability density (Weibull distribution) 0.24 0.35 α (ERC) (MLE from all datasets)

Maximum Posterior estimates Mean interval ( 年 ) Coefficient of variation S. Nomura(SOKENDAI D3) Okada, Uchida, Aoki (2011) Renewal model (log Normal) for 163 repeating earthquake sequences Estimation 1993-2009 Forecasted for 2010 Result for 2010 Probability density function μ Recurrence interval ( Brownian passage time ) α sf s0 Earthquake Recurrence interval) Stochastic model for repeating earthquakes Brownian relaxation oscillator process (e.g. Matthews et al. 2002) ds t = λdt + σ dw t (W t standard B.M.) S t : shear stress S t λdt :stress loading σdw t : stress perturbation S f : failure stress space-time model Non-stationary loading rates and dispersions ds t = λ(x,y,t) dt + σ(x,y,t) dw t x: 水平位置 λ(x,y,t):loading rate S. Nomura(SOKENDAI D3) (x,y) 繰り返し地震系列 Interval lengths obey the BPT distribution: density S 0 : ground stress t 2 ( x ) mean: ( sf s0)/ f( x, ) exp 2 3 2 2 x 2 x variance: / ( s s ) f 0 y: 深さ の震源位置 震源 (x,y) における繰り返し地震発生時刻 We cannot assume the BPT for the interval distribution. t: 時間

Assume the following model ds ( x, y, t) dt ( x, y, t) dw t 0 0 S. Nomura(SOKENDAI D3) λ 0 :Background loading rate σ 0 :Background perturbation rate λ(x,y,t) :space-time rates relative to the background loading rate λ 0 Then we have the BPT intervals for each (x,y) by time transformation t = λ(x,y,t)dt t Parkfield data (Nadeau) S. Nomura(SOKENDAI D3) Micro-earthquakes (HRSN, Magnitude range ー 0.5~2) period 1987/1/1~2004/9/28(preceding 2004 Parkfield) with missing data during 1998/7/1~2001/7/26 λ(x,y,t)is regarded as changes of stress loading velocity, and parameterized by a 3D spline function with smoothness constraints. Objective Bayesian procedure (ABIC) is applied to attain the optimal constraints. 1966 M6.0 2004 M6.0 20km ahead No observation period Result Loading rate change at each sub-region 3 1 2 S. Nomura(SOKENDAI D3) Result Spatial change in time S. Nomura(SOKENDAI D3) 4 4 3 2 1 5 5 6 6

S. Nomura(SOKENDAI D3) 7 Result on the dispersion coeff.α Dispersion coefficientα(proportional to the perturbation rate σ) is affected by the nearby earthquakes Prediction and diagnostic analysis of seismic activity 低 低 高 高 α Geographical Survey Institute Deformation of Japanese islands Coseismic dislocations of Tohoku-Oki earthquake of M9 Time(Month) M9

Triggering Coulomb Stress Sudden Stress Increase FAILURE STRESS FAILURE STRESS Quiescence Sudden Stress Decrease Coulomb s Failure Stress (friction coeff.) X (Epidemic Type Aftershock Sequence model) Ogata (1988, J. Amer. Statist. Assoc.) Omori-Utsu formula for aftershock decay t = 1894 1969 Ogata (1988,JASA) Maximize the function ˆ ( ˆ, Kc ˆ, ˆ, ˆ, pˆ) MLE... Computer codes available. Please visit WEB home page of our project team: http://www.ism.ac.jp/~ogata/ssg/ssge.html

4 Triggered activities Transformed Time Ordinary Time See the following slides 福島県いわき市付近の誘発地震活動 Northern Nagano Pref. Sakae Vil. M 4.0 M7 M 3.5 M 3.0 M7 M7 FAILURE STRESS Quiescence Stress Rate Decrease

7 Foreshocks led by the M7.3 event Foreshocks M 3.0 M 3.5 M 4.0 M 4.5 M 3.0 M 3.5 M 4.0 7 Aftershocks Space vs transformed-time plot of the foreshock activity till M9 mega event

変換時間変換時間 Aftershocks of Tohoku-Oki Earthquake of M9 14 Aftershocks of Tohoku-Oki Earthquake of M9 (cont.) 2010 Chili Earthquake (Mw8.8)Aftershocks M 5.0 2004 Sumatra Earthquake (Mw9.0) Aftershocks

New Zealand Darfield Earthquake Aftershocks and Christchurch Earthquake E NZ-GNS M 3.5 N S W USGS-PDE M 4.0 Extensive Quiescence before the M9 earthquake 7 (Ogata, 1998, AISM) (Ogata, 2004, JGR and 2011, EPS) Delaunay-based function: an illustration

-value K0-value -value Flatness constraints Delaunay-based function: an illustration ρ ( w, w, w, w, w ) L( ) prior( ρ) posterior( ρ) ( ρ) K p q ( ρ) L( ) prior( ρ) d (Likelihood of a Bayesian model; Good 1965) ρ ( ρ) Choose w s that maximize w or minimize M >= 5 1926-2008 p-value M >= 5 1926-2008 K 0 ( x, y ) j j (, t x, y Ht ) ( x, y) p( xj, yj) { j; tj t} ( t tj c) q-value M >= 5 1926-2008 t ( x xj, y yj) S j( x xj, y yj) j j d ( xj, yj)( M j M c ) e q( x, y ) Delaunay-based function: Akaike Bayesian information criterion (Akaike, 1980) M >= 5 1926-2008 M >= 5 1926-2008 Precursory period 1885-1925 Delaunay-based function: an illustration 1926-1995 Ko 1926-2005 Ko Hierarchical Space-time ETAS model (HIST-ETAS) (, t x, y Ht ) ( x, y) { j; tj t} Background rate K( x, y) ( t t c) j p( x, y) ( x x, ) (, ) t q x y j y yj Sj x xj y y j d ( xy, )( M j M c ) e (, ) 1926-1995 1926-2005 M 4.0 Shallow 30km 1926-1995 p 1926-2005 p Stochastic declustering (Zhuang, Ogata & Vere-Jones., 2004 JASA and 2005, JGR) Accept earthquake as a background event with probability: i ( xi, yi) ( ti, xi, yi Hti )

M 5.0 Original data A M 5.0 B C Latitude M 5. 0 Time F C A B D E G Time De-clustered data Longitude G F E D Latitude Time Time Longitude Original data T. Kumazawa(SOKEN-DAI D3) 1926 ~ 2011 Mar. M>=5.0 M9 M 5.0 M 5.0 Q Transformed time by ETAS model M9 Q M 5.0 M 4.0 Ordinary Time

Geographical Survey Institute (2011) West wards East wards Back slip inversion Okada, Uchida, Aoki (2011) Renewal model (log Normal) for 163 repeating earthquake sequences Estimation 1993-2009 Forecasted for 2010 Result for 2010 E-W complession strike slips N-S complession thrust slips Operational Probability Forecasting of Foreshocks and Evaluations: 15 years periods till the Tohoku-Oki Event E-W complession thrust slips N-S complession strike slips

(1) How do we recognize that it is initial earthquake of a cluster? (2) What is definition of foreshocks? Earthquakes (M 4.0) in JMA catalog during 1994 ~ Mar. 2011 are connected by the distance criterion 2 2 dst space ( ctime ) 0.3 (or 33.33km) where c is the constant so as to hold 1day = 1km Cluster types Single-link-clustering 1926-1993, M 4 from the old JMA catalog Cluster Foreshocks Swarms M.A. All clusters member# #c ratio(%) s.e.(%) #c ratio(%) s.e.(%) #c #c 1 467 3.7 ±0.2 -- -- -- 11676 12727 2 125 6.5 ±0.6 584 30.5 ±1.1 1207 1916 3 57 8.0 ±1 271 37.9 ±1.8 387 715 4 33 8.7 ±1.5 153 40.5 ±2.5 192 378 5 18 7.4 ±1.7 93 38.4 ±3.1 131 242 6 12 6.8 ±1.9 63 35.6 ±3.6 102 177 7 10 7.9 ±2.4 44 34.6 ±4.2 73 127 8 8 7.8 ±2.6 31 30.1 ±4.5 64 103 9 8 9.2 ±3.1 29 33.3 ±5.1 50 87 10 8 10.3 ±3.4 25 32.1 ±5.3 45 78 Initial earthquakes of clusters or Isolated earthquakes 1926-1993 Probability of the initial earthquakes Being foreshock during 1926 1993 probability Measuring inter-events concentrations in a cluster and magnitude increments Aftershocks Swarms Foreshocks F A S F F Others freq. Foreshocks freq. Forecasted results for 1994 Mar +----------+-------+-------+-------+-------+ Forecast 0-2.5% 2.5-5% 5%- All +----------+-------+-------+-------+-------+ Foreshocks 33 84 65 182 Others 1572 1849 770 4191 +----------+-------+-------+-------+-------+ All types 1605 1933 835 4373 +----------+-------+-------+-------+-------+ Ratio(%) 2.1 4.3 7.8 4.2 +----------+-------+-------+-------+-------+ Diff. entropy = 22.7 Diff. AIC = 40.0 (cross-table) Probability forecast (%) Relative frequencies A S F

Time difference, Distance & Magnitude difference Normalization (t, r, g) () in [0,1] 3 Time Interval Transformation Epicenter Separation Transformation 1exp{ min( r,50) / 20} Magnitude Difference Transformation Normalized time differnce, distance & magnitude difference in the unit cube Algorithm of foreshock probability calculations in case of plural earthquakes in a cluster For plural earthquakes in a cluster, time differences t ij (days),epicenter separation r (km),magnitude difference g ij are transformed into the unit cube ij ( t, r, g ) (,, ) [0,1] i, j i, j i, j i, j i, j i, j Probability p c is calculated sequentially 3 3 3 1 logit( p ) logit ( x 1, y k k k c 1) 1 k i, j k i, j k i, j #{ i j} a b c d ij k1 k1 k1 Here (x, y) indicates probability of initial earthquake at location (x,y),and the 2 nd term calculates arithmetic mean of polynomials of the normalised space-time magnitude variables for all pairs of earthquakes (i < j) in a cluster, where the coefficients a, b, c, d are as follows. Ogata, Utsu and Katsura, 1996, GJI) k ak bk ck dk 1 8.018-33.25-1.490-10.92 2 62.77 2.805 295.09 3 ただし 6709, 0.4456 1 2 3-37.66-2.190-1161.5 Forecasted sequence and evaluation (1994-2011Mar ) ----------------------------------------------------------------------------------------------------------------------------------------------------------- # F? #C Pc ENTRPY CU~ENT P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 ----------------------------------------------------------------------------------------------------------------------------------------------------------- 1-1 5.14% -0.01537-0.01537 5.14% 2-2 10.06% -0.06863-0.08400 7.46% 12.66% 3-1 18.58% -0.16822-0.25222 18.58% 4-1 10.71% -0.07592-0.32814 10.71% 5-1 0.15% 0.03586-0.29228 0.15% 6-1 1.70% 0.02028-0.27200 1.70% 7-4 9.50% -0.06243-0.33443 9.14% 11.17% 7.87% 9.82% 8-1 6.03% -0.02484-0.35927 6.03% 9-1 1.77% 0.01950-0.33977 1.77% 10 + 1 13.14% 1.27605 0.93628 13.14% 875 + 80 9.2% 0.923 28.649 6.7% 27.8% 27.7% 20.1% 14.0% 14.2% 13.6% 11.6% 15.7% 11.9% 10.1% 8.2% 10.1% 11.7% 10.9% 10.6% 11.5% 11.1% 9.9% 8.2% 7.2% 6.8% 7.6% 7.3% 7.4% 6.7% 7.0% 7.0% 8.0% 8.5% 8.6% 8.2% 8.0% 8.1% 8.4% 7.8% 7.3% 7.5% 7.8% 8.1% 8.1% 7.8% 7.4% 7.7% 7.8% 7.6% 7.2% 7.2% 6.9% 6.8% 6.7% 7.4% 8.0% 7.8% 7.6% 7.7% 8.3% 9.0% 8.7% 8.5% 8.6% 8.3% 8.4% 8.2% 8.2% 8.0% 7.9% 7.9% 8.4% 8.4% 8.6% 8.5% 8.6% 8.4% 8.2% 8.4% 8.3% 8.3% 8.1% 7.9% M7.3 Foreshock of 9 Mar 2011 M9.0 Probability forecast (%) 100% 10% 1% 0.1% Mc 4.0 0.01% 2 5 10 20 50 100 Earthquake number in a cluster Probability forecast (%) 100% 10% 1% 0.1% 0.01% Earthquake number in a cluster M main 6.5 Mc 4.0 Earthquake number in a cluster M7.3 Foreshock of 9 Mar 2011 M9.0 880-11 2.44% 0.01266 31.60644 4.69% 4.77% 6.21% 3.42% 1.74% 1.24% 1.04% 0.90% 0.83% 0.97% 1.03% 881-16 2.11% 0.01604 31.62248 0.03% 0.25% 0.51% 0.83% 2.77% 2.21% 2.02% 3.19% 2.78% 2.50% 2.43% 3.07% 2.92% 2.74% 2.84% 2.68% 882-7 1.47% 0.02259 31.64507 0.06% 0.79% 1.70% 2.06% 1.90% 1.90% 1.88% 883-1 4.51% -0.00878 31.63629 4.51% 884-1 3.84% -0.00178 31.63451 3.84% 885 + 7 5.04% 0.31698 31.95149 6.89% 7.42% 4.88% 3.98% 3.56% 4.05% 4.49% 886-1 2.84% 0.00853 31.96002 2.84% 887-1 7.00% -0.03518 31.92483 7.00% 888-1 7.65% -0.04219 31.88264 7.65% 889-1 7.83% -0.04419 31.83845 7.83% ----------------------------------------------------------------------------------------------------------------------------------------------------------- 2*Entropy0 = 523.96; 2*Entropy = 460.29: 2*Entropy = 63.68 Relative frequencies Others freq. Foreshocks freq. 1994 年 -2011 年 3 月 Probability forecast (%)

Thank you very much for your attention. How foreshock forecast probabilities (BLUE LINES) changed after actual mainshock occurred in case of foreshock-mainshockaftershock sequence? 100% Software available for the ETAS fitting, diagnostic analysis and its manual. Please visit WEB home page of our project team: http://www.ism.ac.jp/~ogata/ssg/ssge.html Very soon, computer programs are available for the Hierarchical Space-Time ETAS (HIST-ETAS) by a Bayesian procedure (ABIC). Probability forecast (%) 10% 1% 0.1% 0.01% Mc 4.0 Single foreshock case Plural foreshocks case Mc 4.0 Mc 4.0 2 5 10 20 50 100 2 5 10 20 50 100 Earthquake number in a cluster Earthquake number in a cluster Single-link-clustering 1926-1993, M 4 from the old JMA catalog Cluster Foreshocks Swarms M.A. All clusters member# #c ratio(%) s.e.(%) #c ratio(%) s.e.(%) #c #c 1 467 3.7 ±0.2 -- -- -- 11676 12727 2 125 6.5 ±0.6 584 30.5 ±1.1 1207 1916 3 57 8.0 ±1 271 37.9 ±1.8 387 715 4 33 8.7 ±1.5 153 40.5 ±2.5 192 378 5 18 7.4 ±1.7 93 38.4 ±3.1 131 242 6 12 6.8 ±1.9 63 35.6 ±3.6 102 177 7 10 7.9 ±2.4 44 34.6 ±4.2 73 127 8 8 7.8 ±2.6 31 30.1 ±4.5 64 103 9 8 9.2 ±3.1 29 33.3 ±5.1 50 87 10 8 10.3 ±3.4 25 32.1 ±5.3 45 78 Single-link-clustering 1926-2009, M 4 from the new JMA catalog Cluster Foreshocks Swarms M.A. All clusters member# #c ratio(%) s.e.(%) #c ratio(%) s.e.(%) #c #c 1 1088 6.5 ±0.2 -- -- -- 14872 16784 2 156 5.6 ±0.4 824 29.6 ±0.9 1800 2780 3 78 7.6 ±0.8 366 35.4 ±1.5 589 1033 4 46 8.2 ±1.2 213 38.2 ±2.1 299 558 5 30 7.9 ±1.4 145 38.1 ±2.5 206 381 6 20 7.1 ±1.5 108 38.2 ±2.9 155 283 7 15 7.0 ±1.7 77 36.0 ±3.3 122 214 8 13 7.6 ±2 59 34.7 ±3.7 98 170 9 11 7.9 ±2.3 46 33.1 ±4 82 139 10 11 8.7 ±2.5 44 34.9 ±4.2 71 126

前震の確率は本震が起きてからどのように変わったか?. 青線が本震直前以降の確率変化 左図が一個の前震の場合で右図が複数個の前震 ( 赤線 ) の場合 群れの先頭 ( 孤立地震を含む ) が前震である確率の地域性 JMA old 1926-1993 JMA old 1926-1993 100% 10% Probability forecast (%) 1% 0.1% Mc 4.0 JMA new 1926-2009 JMA new 1926-2009 Mc 4.0 Mc 4.0 0.01% 2 5 10 20 50 100 2 5 10 20 50 100 Earthquake number in a cluster Earthquake number in a cluster

Thank you very much for your attention Software available. Please visit WEB home page of our project team: http://www.ism.ac.jp/~ogata/ssg/ssge.html