Fuzzy Neutrosophic Equivalence Relations

Similar documents
Introduction to Matrix Algebra

Riemann Integral Oct 31, such that

ON n-fold FILTERS IN BL-ALGEBRAS

Control Systems. Controllability and Observability (Chapter 6)

On AP-Henstock Integrals of Interval-Valued. Functions and Fuzzy-Number-Valued Functions.

PRODUCTS OF SPACES OF COUNTABLE TIGHTNESS

MAT 1275: Introduction to Mathematical Analysis

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

On-Line Construction. of Suffix Trees. Overview. Suffix Trees. Notations. goo. Suffix tries

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

+ = () i =, find the values of x & y. 4. Write the function in the simplifies from. ()tan i. x x. 5. Find the derivative of. 6.

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Approximate Integration

Section 2.2. Matrix Multiplication

AP Calculus AB AP Review

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

8.3 THE HYPERBOLA OBJECTIVES

FREE Download Study Package from website: &

Exercise sheet 6: Solutions

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz,

The Laws of Sines and Cosines

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

Chapter 5. Integration

Project 3: Using Identities to Rewrite Expressions

SMARANDACHE GROUPOIDS

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients

S. Ostadhadi-Dehkordi and B. Davvaz* Department of Mathematics, Yazd University, Yazd, Iran

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

7. SOLVING OBLIQUE TRIANGLES: THE LAW OF SINES

Modified Farey Trees and Pythagorean Triples

Supplemental Handout #1. Orthogonal Functions & Expansions

CHAPTER 4: DETERMINANTS

Core 2 Logarithms and exponentials. Section 1: Introduction to logarithms

EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Super-efficiency Models, Part II

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Section 2.3. Matrix Inverses

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * *

5.1 Properties of Inverse Trigonometric Functions.

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Every graph occurs as an induced subgraph of some hypohamiltonian graph

42. (20 pts) Use Fermat s Principle to prove the law of reflection. 0 x c

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

Riemann Integral and Bounded function. Ng Tze Beng

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Limit of a function:

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 12, December


m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

Convergence rates of approximate sums of Riemann integrals

Worksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of

Automorphism Group of an Inverse Fuzzy Automaton

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee

OVERVIEW Using Similarity and Proving Triangle Theorems G.SRT.4

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

Bisimulation, Games & Hennessy Milner logic

Introduction of Fourier Series to First Year Undergraduate Engineering Students

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

STRAND F: GEOMETRY F1 Angles and Symmetry

Thomas Whitham Sixth Form

NOTE ON APPELL POLYNOMIALS

Review of the Riemann Integral

50 AMC Lectures Problem Book 2 (36) Substitution Method

A new Type of Fuzzy Functions in Fuzzy Topological Spaces

Boolean Algebra cont. The digital abstraction

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

Synchronization of regular automata

THREE DIMENSIONAL GEOMETRY

y z A left-handed system can be rotated to look like the following. z

Flexibility of Projective-Planar Embeddings

Intermediate Division Solutions

Advanced Algorithmic Problem Solving Le 6 Math and Search

DIFFERENCE EQUATIONS

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

12.4 Similarity in Right Triangles

Multiplicative Versions of Infinitesimal Calculus

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Unit-VII: Linear Algebra-I. To show what are the matrices, why they are useful, how they are classified as various types and how they are solved.

NON-DETERMINISTIC FSA

Chapter 1 Vector Spaces

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

ENGR 3861 Digital Logic Boolean Algebra. Fall 2007

K [f(t)] 2 [ (st) /2 K A GENERALIZED MEIJER TRANSFORMATION. Ku(z) ()x) t -)-I e. K(z) r( + ) () (t 2 I) -1/2 e -zt dt, G. L. N. RAO L.

Linear Programming. Preliminaries

Convergence rates of approximate sums of Riemann integrals

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

A Study on the Properties of Rational Triangles

Note 8 Root-Locus Techniques

Functions. mjarrar Watch this lecture and download the slides

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

MAT 1275: Introduction to Mathematical Analysis

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

Transcription:

wwwijirdm Jur 6 Vl 5 ssue SS 78 Olie u eutrsphi Equivlee eltis J Mrti Je eserh Shlr Deprtmet f Mthemtis irml Cllege fr Wme Cimtre mil du di rkiri riipl irml Cllege fr Wme Cimtre mil du di strt: his pper itrdues the ept f fu eutrsphi equivlee reltis d disuss sme f their prperties ls we defie fu eutrsphi trsitive lsure d ivestigte their prperties Kewrds: u eutrsphi equivlee relti fu eutrsphi equivlee lss fu eutrsphi trsitive lsure MSC : 3993E99 trduti eltis re suitle tl fr desriig rrespdees etwee jets Crisp reltis like hve served well i develpig mthemtil theries he use f fu reltis rigited frm the servti tht rel life jets e relted t eh ther t erti degree u reltis re le t mdel vgueess ut the t mdel uertit tuitiisti fu sets s defied tssv [45] give us w t irprte uertit i dditil degree995 lretie Smrdhe [ 3]eteded the ept f ituitiisti fu sets t tri mpet lgi set with-stdrd itervl mel eutrsphi set Mtivted this ept rkiriet l [] defied the fu eutrsphi set i whih the -stdrd itervl is tke s stdrd itervl 996 ustie d urill [7] itrdued the ept f ituitiisti fu reltis d studied sme f its prperties 3 Deshrijver d Kerre [9] ivestigted sme prperties f the mpsiti f ituitiisti fu reltis this pper we itrdue d stud sme prperties f fu eutrsphi equivlee reltis d fu eutrsphi trsitive lsures relimiries Defiiti : [] u eutrsphi set the uiverse f disurse is defied s where : [] d + + 3 Defiiti :[] u eutrsphi set is suset f u eutrsphi set ie fr ll if Defiiti 3: [] Let e -empt set d he m m mi mi mi m Defiiti 4: [] he differee etwee tw u eutrsphi sets d is defied s \ mi mi m e tw u eutrsphi sets EOL JOUL O OVVE ESECH & DEVELOME ge 9

wwwijirdm Jur 6 Vl 5 ssue Defiiti 5: [] u eutrsphi set ver the uiverse is sid t e ull r empt u eutrsphi set if fr ll t is deted Defiiti 6: [] u eutrsphi set ver the uiverse is sid t e slute uiverse u eutrsphi set if fr ll t is deted Defiiti 7: [] he mplemet f u eutrsphi set is deted d is defied s where he mplemet f u eutrsphi set ls e defied s Defiiti 8: [3] fu eutrsphi set relti is defied s fu eutrsphi suset f hvig the frm { : } where : Stisf the diti + + 3 We will dete with the set f ll fu eutrsphi susets i Defiiti 9: [3] Give ir fu eutrsphi relti etwee d we defie etwee d mes f t whih we ll iverse relti f Defiiti : [3] Let d e tw fu eutrsphi reltis etwee d fr ever We defie 3 { 4 { 5 { : } Defiiti : [3] Let e t-rms r t-rms t eessril dul tw tw d We will ll mpsed relti t the e defied / Where { } Wheever { } + + { } 3 he hie f the t-rms d t-rms i the previus defiiti is evidetl ditied the fulfilmet f + + 3 EOL JOUL O OVVE ESECH & DEVELOME ge

wwwijirdm Jur 6 Vl 5 ssue Defiiti: [3] he relti is lled the relti f idetit if he mplemetr relti is defied 3u eutrsphi equivlee reltis Defiiti 3: Let e set d let he the mpsiti f d ls edefied s fllws : fr [ ] [ ] [ d ] EOL JOUL O OVVE ESECH & DEVELOME ge Defiiti 3: Let e set d let 3 he 3 3 f d the prtiulr if the 3 3 3 5 f 7 4 3 3 the 6 d 8 rpsiti 3: Let d e fu eutrsphi reltis set f the rf: rf fllws frm defiiti 3 Defiiti 33: fu eutrsphi relti set is lled fu eutrsphi equivlee relti i shrt E if it stisfies the fllwig ditis: fr eh i t is fu eutrsphi refleive ie ii t is fu eutrsphi smmetri ie iii t is fu eutrsphi trsitive ie We will dete the set f ll Es s E he fllwig prpsiti is the immedite result f defiiti 3 rpsiti 3: Let e set d let i f is fu eutrsphi refleive respetivel smmetri trsitive the is fu eutrsphi refleive respetivel smmetri trsitive ii f is fu eutrsphi refleive respetivel smmetri trsitive the is fu eutrsphi refleive respetivel smmetri trsitive iii f is fu eutrsphi refleive the iv f is fu eutrsphi smmetri the d re smmetri d v f d re fu eutrsphi refleive respetivel smmetri trsitive he refleive respetivel smmetri trsitive is fu eutrsphi

wwwijirdm Jur 6 Vl 5 ssue vi f d re fu eutrsphismmetri the is fu eutrsphi smmetri rf: t is the immedite result f defiiti 33 he fllwig tw results re esil see rpsiti 34: Let e set f E the rpsiti 35: Let { α e -empt fmil f Es set he α E Hwever i geerl U α eed } αγ t e E Emple 3: Let { } αγ Let d e the s represeted mtries re give elw 74 63 74 63 63 63 63 74 74 63 E d is the fu eutrsphi relti represeted the fllwig mtri he lerl 74 74 63 63 7 > 6 O the ther hd 4 > 3 d < is t fu eutrsphi trsitive Hee E hus S rpsiti 36: Let d e fu eutrsphi refleive reltis set he rf: Let he [ t t ] t Sie d re fu eutrsphi refleive Similrl t [ t t ] αγ is ls fu eutrsphi refleive relti EOL JOUL O OVVE ESECH & DEVELOME ge

wwwijirdm Jur 6 Vl 5 ssue hus fr eh Hee is fu eutrsphi relti rpsiti 37: Let e set d let E f the E rf: Let Sie d re fu eutrsphi refleive [ ] Similrl d [ ] hus S is fu eutrsphi refleive Let [ ] [ ] Sie d re fu eutrsphi smmetri [ ] Similrl he [ ] [ ] S is fueutrsphi smmetri O the ther hd prpsiti3 Sie d re fu eutrsphi trsitive E Hee Defiiti 34: Let e fu eutrsphi equivlee relti set d let We defie mple mppig : s fllws : fr eh he lerl S he fu eutrsphi set i is lled fu eutrsphi equivlee lss f tiig he set { : } is lled the fu eutrsphi qutiet set f d deted / herem 3: Let e set d let E he the fllwig hld: if d l if fr fr i ii if d l if iii U iv here eists surjeti p / rf: : lled the turl mppig defied p fr eh i Suppse Hee Sie is fu eutrsphi equivlee relti EOL JOUL O OVVE ESECH & DEVELOME ge 3

wwwijirdm Jur 6 Vl 5 ssue Cversel suppse he [ ] Similrl Let he Sie is fu eutrsphi trsitive [ ] the similr rgumets we hve Hee he prfs f ii iii d iv re es his mpletes the prf Defiiti 35: Let e set let d let { α } αγ lled the E geerted d deted t is esil see tht hus e the fmil f ll the Es tiig he α is e e is the smllest fu eutrsphi equivlee relti tiig Defiiti 36: Let e set d let he the fu eutrsphi trsitive lsure f deted fllws: U where rpsiti 37: Let e set d let he i iif there eists Emple 3: Let { } he 3 Mrever suh tht i whih urs times + the αγ is defied s is the smllest fu eutrsphi trsitive relti tiig d let e the defied s fllws: 84 9 336 38 37 S 84 84 9 336 38 38 37 3 84 84 9 336 38 38 37 84 84 9 336 38 38 37 hus EOL JOUL O OVVE ESECH & DEVELOME ge 4

wwwijirdm Jur 6 Vl 5 ssue 84 84 9 336 38 38 37 Hee is fu eutrsphi trsitive rpsiti 39: f is fu eutrsphi smmetrithe s is rf: r d [ ] Similrl [ ] is fu eutrsphi smmetri fr ther prf: Hee t is ler tht is fu eutrsphi smmetri Suppse is fu eutrsphi smmetrilet he k + [ ] [ ] is fu eutrsphi smmetri [ k ] [ k ] k [ k ] k Similrl k + k is fu eutrsphi smmetri fr k > We shw tht k + k + d k + k [ k ] [ ] k [ k ] k k + S f is fu eutrsphi smmetri fr rpsiti 3: Let e set d let d E rf: t is ler tht Hee Hee is fu eutrsphi smmetri he f the the Suppse defiiti 3 Suppse d E k fr k k k fr > he it is ler tht k he defiiti 3 Suppse he k + k S herem 3: e f is fu eutrsphi relti set the [ ] hus + + k k k+ fr Hee EOL JOUL O OVVE ESECH & DEVELOME ge 5

wwwijirdm Jur 6 Vl 5 ssue EOL JOUL O OVVE ESECH & DEVELOME ge 6 rf: Let [ ] he lerl prpsiti 38 is fu eutrsphi trsitivelet Sie d hus S is fu eutrsphi refleive t is ler tht [ ] is fu eutrsphi smmetri prpsiti 38 is fu eutrsphi smmetri Hee E w E K suh tht K he K d K K hus K defiiti34[ ] K K fr S K Hee [ ] e his mpletes the prf rpsiti 3: Let e set d let E We defie s fllws: ie he E rf: prpsiti 38 is fu eutrsphi trsitive Let Sie d re fu eutrsphi refleive [ ] [ ] [ ] hus is fu eutrsphi refleive w let Sie d re fu eutrsphi smmetri [ ] [ ] [ ] [ ] [ ] [ ] hus is fu eutrsphi smmetri Hee E he fllwig result gives ther desripti fr f tw Es d herem 33: Let e set d let E f E the where detes the lest upper ud fr { } with respet t the ilusi rf: Let he he [ ] Sie is fu eutrsphi refleive Similrl [ ] hus Similrl we hve S is upper ud fr { } with respet t w let e fu eutrsphi equivlee relti suh tht d Let he [ ] [ ] sie is fu eutrsphi trsitive Similrl d [ ] [ ]

wwwijirdm Jur 6 Vl 5 ssue hus S is the lest upper ud fr { } with respet t Hee rpsiti 3: Let e set f E rf: Suppse E the [ ] e he therem 3 E Sie d hus prpsiti 39 E d hus Hee he fllwig is the immedite result f rpsiti 3 d rpsiti 3 Crllr 3: Let e set f E Sie defiiti 3 d O the ther hd sie prpsiti 39 suh tht the S 4 eferees i rkiri Sumthi d J Mrti Je u eutrsphi Sft plgil Spes tertil jurl f mthemtil rhives 43 5-38 ii rkiri J Mrti Je Mre u eutrsphi sets d u eutrsphi plgil spes tertil jurl f ivtive reserh d studies M 4 vl 3 ssue 5643-65 iii rkiri J Mrti Jeu eutrsphi reltiscmmuited iv K tssv tuitiisti fu sets u sets d sstems 986:87-96 v K tssv Mre ituitiisti fu sets u sets d sstems98933:37-46 vi uhesu Sme servtis tuitiisti fu reltis timert Semir util equtis-8 vii ustie H urillstrutures ituitiisti fu reltis u sets d sstems Vl7899693-33 viii ChkrrthMK M Ds Studies i fu relti ver fu susets u sets d sstems Vl 998379-89 i DeshrijverG Ee Kerre O the mpsiti f ituitiisti fureltis u sets d sstems Vl 363333-36 DDuis d H rde lss f u mesures sed trigulr rmsstj Geerl sstems 843-698 i Mukerjee Sme servtis fu reltis ver fu susets u sets d sstems Vl 598549-54 ii MurliV u equivlee reltis u sets d sstems 3 98955-63 iii Smrdhe eutrsphi set geerliti f the ituitiisti fu sets terj ure pplmth4 587 97 EOL JOUL O OVVE ESECH & DEVELOME ge 7