Molecular Interactions in Binary Organic Liquid Mixtures Containing Ethyl Oleate and Ethanol at 2MHz Frequency

Similar documents
KEYWORDS: Ethyl Oleate, Isopropanol, ultrasonic speed, viscosity, density, FT-IR spectroscopy.

Ultrasonic Study of Molecular Interaction in Binary Mixture at Different Temperatures (303 K 318 K)

Thermo acoustical study of tetrahydrofuran with ethanol using ultrasonic technique at 323K

Thermo-acoustical molecular interaction studies in ternary liquid mixtures using ultrasonic technique at 303K

ISSN X Original Article ACOUSTICAL STUDIES OF BINARY LIQUID MIXTURES OF P-CHLOROTOLUENE IN CHLOROBENZENE AT DIFFERENT TEPERATURES

STUDY OF THERMOACOUSTICAL PARAMETERS OF BINARY LIQUID MIXTURES OF METHYL BENZOATE WITH 1-NONANOL AT DIFFERENT TEMPERATURES

Molecular interactions in ternary liquid mixture involving toluene at different frequencies

Theoretical Evaluation of Ultrasonic Velocity in Binary Liquid Mixtures of Alcohols [S] + Benzene

Ultrasonic Investigations on 1-Bromopropane in Chlorobenzene Mixture at K, K, K and K at 2 MHz

Studies on Acoustic Parameters of Ternary Mixture of Dimethyl Acetamide in Acetone and Isobutyl Methyl Ketone using Ultrasonic and Viscosity Probes

Evaluation of Thermodynamical Acoustic Parameters of Binary mixture of DBP with Toluene at 308K and at Different Frequencies

IJBPAS, September, 2012, 1(8): MOLECULAR INTERACTION STUDIES ON SOME BINARY ORGANIC LIQUID MIXTURES AT 303K SUMATHI T* AND GOVINDARAJAN S

Ultrasonic Study of Acoustical Parameters of Binary Liquid Mixtures of Methyl Benzoate with 1-Octanol at K, K, K and 318.

Measurement of Ultrasonic Velocityin Binary Liquid Mixture of N,N-Dimethyl Acetamide (NNDA) + Diethyl Amine(DEA)

Pelagia Research Library

ULTRASONIC INVESTIGATIONS ON BINARY MIXTURE OF ACETOPHENONE WITH N-BUTANOL AT TEMPERATURES K K

Ultrasonic studies of molecular interactions in binary mixtures of n-butanol with water at different temperatures (308K, 318K and 328K)

Ultrasonic Study of Molecular Interactions in Binary Liquid Mixtures and Acoustic Parameters of Dimethylsulphoxide with Ethanol at 303K

International Letters of Chemistry, Physics and Astronomy Vol

Pelagia Research Library

ULTRASONIC AND MOLECULAR INTERACTION STUDIES OF CINNAMALDEHYDE WITH ACETONE IN n-hexane

Comparative Study of Molecular Interaction in Ternary Liquid Mixtures of Polar and Non-Polar Solvents by Ultrasonic Velocity Measurements

Molecular Association Studies on Polyvinyl Alochol At 303k

ULTRASONIC INVESTIGATIONS IN A LIQUID MIXTURE OF ETHYLENEGLYCOL WITH n-butanol

Ultrasonic Studies on the Molecular Interaction of Certain Aliphatic Dialdehyde Compounds with Ethylenediamine in n-hexane at Different Temperature

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

Acoustical Studies on Binary Liquid Mixture of Methylmethacrylate in 1, 4-Dioxane at 303 K Temperature

Ultrasonic study of n-alkanols in toluene with nitrobenzene

Study of Thermo Physical Properties of Binary Liquid Mixtures

Interrelationship between Surface Tension and Sound Velocity & Thermodynamical studies of binary liquid mixtures

Molecular Interaction Studies with Zinc Stearate, Calcium Stearate and Ethylene Glycol

Ultrasonic studies of molecular interactions in pyridine + N-N dimethylformamide + cyclohexane ternary liquid mixtures at different temperatures

Acoustical and Thermodynamical Studies in Ternary Mixtures of Ethylene Glycol and Glycerol with Octanol AT K

Ultrasonic studies of N, N-Dimethylacetamide and N-Methylacetamide with Alkoxyethanols in Carbon tetrachloride at different temperatures

Research Journal of Chemical Sciences ISSN X Vol. 5(6), 32-39, June (2015)

Journal of Chemical and Pharmaceutical Research, 2012, 4(1): Research Article

Scholars Research Library

Ultrasonic Studies of Molecular Interactions in Organic Binary Liquid Mixtures

Acoustic Studies of Molecular Interaction in 1,1`-Diacetyl Ferocene (DAF) in Different Solutions

Ultrasonic Velocity Determination in Binary Liquid Mixtures

Acoustical Studies on the Ternary Mixture of 1, 4- Dioxane + Chloroform + Cyclohexane liquid Mixtures At , and 313.

STUDY OF SOLVENT-SOLVENT INTERACTION IN A AQUEOUS MEDIUM AT DIFFERENT TEMPERATURES BY ULTRASONIC TECHNIQUE

Research Article Excess Transport Properties of Binary Mixtures of Quinoline with Xylenes at Different Temperatures

Journal of Chemical and Pharmaceutical Research

Study of molecular interaction in binary liquid mixture of dimethyl acetamide and acetone using ultrasonic probe

Refractive Indices, Ultrasonic Velocities Surface Tension and Thermo Acoustical Parameters of Anisaldehyde+ Benzene at K

Determination of stability constants of charge transfer complexes of iodine monochloride and certain ethers in solution at 303 K by ultrasonic method

Variation of Acoustical Parameters of Herbal Extract Pomegranate Solutions at Frequency 4MHz

A Study on Density and Viscosity of Binary Solutions of n- Propyl Acetate and IsoPropyl Alcohol at Various Temperatures

Density, viscosity and speed of sound of binary liquid mixtures of sulpholane with aliphatic amines at T = K

THEORETICAL EVALUATION OF SOUND VELOCITY, VISCOSITY AND DENSITY OF BINARY LIQUID SYSTEM

THE STUDY OF MOLECULAR INTERACTIONS IN STABILIZERS AND PLASTICIZER THROUGH ULTRASONIC MEASUREMENTS

Scholars Research Library

Journal of Chemical and Pharmaceutical Research, 2013, 5(1): Research Article

Densities and Viscosities of the Ternary Mixtures Water + Butyl Acetate + Methanol and Water + Ethyl Propionate + Methanol at 303.

SHORT COMMUNICATION. Ultrasonic Studies of Amino Acids in Aqueous Sucrose Solution at Different Temperatures

Research Article. Ultrasonic investigation of molecular interaction in aqueous glycerol and aqueous ethylene glycol solution

ULTRASONIC INVESTIGATIONS OF MOLECULAR INTERACTIONS IN AQUEOUS ELECTROLYTIC SOLUTIONS AT VARYING TEMPERATURES

Isentropic Compressibility for Binary Mixtures of Propylene Carbonate with Benzene and Substituted Benzene

Molecular Interaction Study of Binary Solutions of n-butyl Acetate and Isopropanol at Various Temperatures

International Journal for Pharmaceutical Research Scholars (IJPRS)

International Journal of Advance Engineering and Research Development. Ultrasonic investigations of p-cresol with dimethyl formamide

[Thakur*, 4.(9): September, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Study Of Ultrasonic Parameters Of Polyvinyl Butyral

Satish B. Maulage 1, Dr. R. G. Machale 2, S.V. Gayakwad 3, Dr. S. D. Naikwade 4. ISSN:

ULTRASONIC STUDIES ON NON-AQUEOUS SOLUTIONS OF CARBON TETRA CHLORIDE IN TOLUENE M.THIRUNAVUKKARASU, N.KANAGATHARA

THEORETICAL EVALUATION OF ULTRASONIC VELOCITY IN THE

Ultrasonic Studies of Some Biomolecules in Aqueous Guanidine Hydrochloride Solutions at K

Thermo-Acoustical Molecular Interaction Studies in Birnary Liquid Mixtures by Ultrasonic Velocity Measurement (Diethylamine + n-butanol)at 303.

DENSITY AND SPEED OF SOUND OF BINARY MIXTURES OF ALIPHATIC ESTERS WITH N-METHYLACETAMIDE AT K

DENSITIES AND VISCOSITIES OF BINARY MIXTURES OF XYLENES (o-, m-, AND p-) WITH PROPAN 1-OL AT , , AND K.

Journal of Chemical and Pharmaceutical Research, 2015, 7(6): Research Article

Study of Molecular Interactions in Stearates and Triethylene Glycol through Ultrasonic Measurements

Investigation of Acoustical Parameters of Polyvinyl Acetate

Refractive indices, Ultrasonic velocities, Surface Tension and Thermo acoustical parameters of Anisaldehyde + Benzene at K.

ULTRASONIC STUDIES AND MOLECULAR INTERACTION STUDIES ON SARDINE FISH OIL AND ANILINE BINARY MIXTURE

Research Article. Dielectric and refractive index studies of phenols in carbon tetrachloride, benzene and acetone through excess parameter

International Journal of Scientific Research and Reviews

Comparative Study of Molecular Interactions in Binary Liquid Mixtures of 4 Methyl-2-pentanoneWith Butan-2-One, Furfuraldehyde, Cyclohexanone At 308 K

ULTRASONIC STUDIES ON MOLECULAR INTERACTIONS IN THE BINARY MIXTURES OF METHYLBENZOATE WITH N- ALKANOLS AT 303 K

Journal of Chemical and Pharmaceutical Research, 2012, 4(8): Research Article

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 4, May 2014

Speed of Sound in Binary Mixtures Containing Stearates and Nitrobenzene

Ultrasonic Study of Binary Mixture of Acetone with Bromobenzene and Chlorobenzene at Different Frequencies

Scholars Research Library

Ultrasonic studies of ternary liquid mixtures of N-N-dimethylformamide, nitrobenzene, and cyclohexane at different frequencies at 318 K

MOLECULAR INTERACTION STUDIES IN THE TERNARY LIQUID MIXTURE OF PYRIDINE + BENZENE + N, N-DIMETHYLFORMAMIDE BY ULTRASONIC VELOCITY MEASUREMENTS

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

Theoretical Models of Ultrasonic Velocities in binary liquid mixtures

Ultrasonic Behaviour of Binary Mixtures Containing Stearates and Acetone

Ultrasonic and Theoretical study of Binary Mixture of two Polar Liquids at Different Temperatures

Thermodynamics of binary liquid mixtures of acrylates with dodecane-1-ol

Volumetric and transport properties of binary liquid mixtures of aromatic hydrocarbons with N-methylacetamide at K

Ultrasonic Velocities of Acrylates with 2-Hexanol

Ultrasonic velocity and viscosity studies of tramacip and parvodex in binary mixtures of alcohol + water

Ultrasonic Velocity, Density and Viscosity of Binary Liquid Mixtures of Acetone with Toluene, Chlorobenzene and Nitrobenzene

INTERNATIONAL JOURNAL OF CURRENT RESEARCH IN CHEMISTRY AND PHARMACEUTICAL SCIENCES

Ultrasonic studies on molecular interactions in binary mixtures of acetonitrile with carbonyl molecules

Ultrasonic Studies in Ternary Mixtures of Alcohols With NN DMA in N- Hexane at 303K

Available online Research Article

Transcription:

International Letters of Chemistry, Physics and Astronomy Online: 2014-10-23 ISSN: 2299-3843, Vol. 40, pp 17-23 doi:10.18052/www.scipress.com/ilcpa.40.17 2015 SciPress Ltd., Switzerland Molecular Interactions in Binary Organic Liquid Mixtures Containing Ethyl Oleate and Ethanol at 2MHz Frequency Srilatha Manukonda 1, G. Pavan Kumar 2, Ch. Praveen Babu 2 1 Research Scholar, Department of Chemistry, A.U. College of Engineering, Visakhapatnam, India 2 Research Scholar, Department of Physics, Andhra University, Visakhapatnam, India E-mail address: bvsaradhi70@gmail.com ABSTRACT Molecular interactions of binary mixtures of Ethanol with a new organic compound Ethyl Oleate are investigated at a constant ultrasonic frequency of 2MHz under the temperature range of 303.15K- 318.15K. The effect of mole fraction of Ethyl Oleate on velocity of sound wave and the density and viscosity of binary mixtures at various temperatures were studied. The effects on density (ρ), viscosity (η), adiabatic compressibility (β ad ), inter molecular free length (L f ) and internal pressure (П i ) also was studied. Keywords: Ethyl Oleate, Ethanol, molecular interactions, adiabatic compressibility 1. INTRODUCTION Molecular interactions are interactions between electrically neutral molecules or atoms. Other than atomic bonds these are electrical in nature and consist of attractive forces (orientation, induction, and dispersion forces) and repulsive forces. Molecular interaction first taken into consideration by J. D. van der Waals (1873) in explaining the properties of real gases and liquids. These depend on the distance between the molecules and usually are described by the potential energy of interaction. Studies on liquid- liquid mixtures either binary, ternary or more has importance of its own in various fields of con temporal civilized societies like chemical engineering, food processing, preparation of cosmetics, polymer paints and cleansing agents, petroleum, edible and non edible oil, preparation of bio diesel etc. Ultrasonic waves have their extensive applications in various fields like nondestructive tests for solids and liquids in medical and engineering, food processing, pharmaceutical, polymer and chemicals, metallurgical industries etc. It will be an advantageous tool if these two fields were combined for conducting studies on inter and intra particulate behavior. Ultrasonic investigations of binary mixtures have been taking place since decades by so many scholars under various heads like acoustic, thermodynamic, molecular interactions etc. Lot of literature survey has been conducted as part of author s doctoral program and found some new compounds with an observation that there were no publications till now in the field of ultrasonic studies on binary mixtures with fatty acid ethyl ester (Z)-9-Octadecenoic Acid Ethyl Ester. The author has been carrying out the studies on binary organic liquid mixture of SciPress applies the CC-BY 4.0 license to works we publish: https://creativecommons.org/licenses/by/4.0/

18 Volume 40 fatty acid ethyl ester (Z)-9-Octadecenoic Acid Ethyl Ester (here after called as Ethyl Oleate) with some selected alcohols (ethanol, butanol, iso propyl alcohol), amines (aniline, o- toluidine, m-toluidine), aromatic and halogenated aromatic hydrocarbons (toluene, o-xylene, o-chlorotoluenes), carbonyl compounds (acetophenane, benzoldehyde, cyclohexanone) and some esters as doctoral research work. In the present paper the author submitting part of the studies as the effect of temperature and concentration on ultrasonic velocity(v) of 2MHz wave in the pure and mixtures of two organic liquids Ethyl Oleate and Ethanol at various temperatures 303.15K, 308.15K, 313.15K and 318.15K. The effects on density (ρ), viscosity (η), Adiabatic compressibility (β ad ), Inter molecular free length (L f ) and Internal pressure (П i ) also were studied. Results were tabulated and the relations among the mentioned parameters were represented as Graph.1. 2. MATERIALS Organic liquids Ethyl Oleate (C 20 H 38 O 2, 310.51g /mol) and Ethanol (C 2 H 6 O, 46.08644 gm/mol) of AR grade were procured from Sigma-Aldrich with CAS no.111-62-6 and 64-17-5 respectively are used directly without purification. The densities and viscosities of the liquid compounds were measured with specific gravity bottle/pyknometer and Ostwold viscometer pre calibrated with 3D water of Millipore to nearest mg/ml. The time taken for flow of viscous fluid in Ostwold viscosity meter is measured to a nearest 0.01 sec. Borosilicate glassware, Japan make Shimadzu electronic balance of sensitivity +0.001gm and constant temperature water bath of accuracy +0.1K were used while conducting the experiments 2MHz ultrasonic interferometer model no. F-05 (S.No.1314421) with least count of micrometer 0.001mm of Mittal Enterprises was used for calculating velocities of sound waves and all the tests were conducted as per ASTM standard procedures. 3. EXPERIMENT AND RESULTS Ethyl Oleate and Ethanol were mixed in different mole fractions and the physical parameters density and viscosity were measured with standard methods by varying the temperature from 303.15 K to 318.15 K. The velocity of 2MHz ultrasonic wave in pure and liquid mixtures was determined with interferometer at each temperature. The results obtained for pure liquids were compared with the available literature and presented in Table.1. Table 1. Density, viscosity and velocity of pure compounds. Compound Ethyl Oleate Ethanol Temp. K 303.15 308.15 313.15 318.15 303.15 308.15 313.15 318.15 Density (ρ) kg/m 3 Viscosity(η) Velocity (U) Ns/m 2 m/s Expe. Lite. Expe. Lite. Expe. Lite. 863.50 863.20 3 5.3101 5.3094 3 1368.16-859.34 859.50 3 4.7164 4.7156 3 1340.78-855.62 855.80 3 4.2163 4.2137 3 1324.00-852.04 852.20 3 3.7820 3.7876 3 1305.09-787.90 785.30 784.00 780.90 781.00 2-772.90 2 768.00 7 0.9917 0.8974 0.8133 0.7553 0.9944 8 0.9015 8 0.8306 8 0.7642 8 1127.80 1115.20 1100.60 1084.40 1132.2 8 1117.6 8 1101.6 8 1084.7 8

International Letters of Chemistry, Physics and Astronomy Vol. 40 19 The density, viscosity and velocity for mixtures of various mole fractions of Ethyl Oleate are presented in Table 2. along with the some thermodynamic parameters Adiabatic compressibility, Inter molecular free length and Internal pressure. The density, viscosity and velocity for pure solutions are decreasing with the increase of temperatures. From the graphs drawn it is observed that adiabatic compressibility and inter molecular free length are decreasing with the increase of mole fraction of Ethyl Oleate at a constant temperature where as density, viscosity, velocity and internal pressure are increasing. Mole fraction X 1 Velocity m/sec U Tables 2. Binary mixture of Ethyl Oleate + Ethanol. Density Kg/m 3 ρ Viscosity Nsm -2 η Adiabatic Compressibility 10-10 N -1.m 2 β ad Intermolecular free length 10-10 m L f Internal Pressure 10 6 N.m -2 П i 303.15 K 0.0000 1127.8 787.9 0.9917 9.9784 6.5546 103.2532 0.5964 1167.86 800.5 1.7112 9.1591 6.2798 308.0956 0.7870 1207.92 813.1 2.4307 8.4290 6.0243 581.9620 0.8808 1247.98 825.7 3.1502 7.7761 5.7862 910.2278 0.9366 1288.04 838.3 3.8697 7.1902 5.5640 1283.1988 0.9736 1328.1 850.9 4.5892 6.6628 5.3560 1693.7541 1.0000 1368.16 863.5 5.3087 6.1867 5.1611 2136.3686 308.15K 0.0000 1115.2 785.3 0.8974 10.2390 6.7036 100.1830 0.5964 1152.8 797.63 1.5338 9.4338 6.4347 297.4857 0.7870 1190.4 809.96 2.1702 8.7126 6.1838 561.1592 0.8808 1228 822.29 2.8066 8.0645 5.9493 877.3912 0.9366 1265.6 834.62 3.443 7.4802 5.7298 1236.9985 0.9736 1303.2 846.95 4.0794 6.9521 5.5238 1633.2170 1.0000 1340.8 859.28 4.7158 6.4734 5.3303 2060.7837 313.15 K 0.0000 1100.6 784 0.8133 10.5299 6.8631 97.4537 0.5964 1137.85 795.93 1.3804 9.7040 6.5885 287.8926 0.7870 1175.1 807.86 1.9475 8.9642 6.3323 542.0498 0.8808 1212.35 819.79 2.5146 8.2992 6.0929 846.7372 0.9366 1249.6 831.72 3.0817 7.6998 5.8688 1193.1741 0.9736 1286.85 843.65 3.6488 7.1578 5.6584 1574.8874 1.0000 1324 855.58 4.2159 6.6675 5.46125 1986.9125 318.15 K 0.0000 1084.4 780.9 0.7553 10.8899 7.0454 95.8705 0.5964 1121.18 792.75 1.2598 10.0349 6.7632 280.7083 0.7870 1157.96 804.6 1.7643 9.2689 6.5000 526.5448 0.8808 1194.74 816.45 2.2688 8.5807 6.2540 820.8146 0.9366 1231.52 828.3 2.7733 7.9602 6.0236 1155.1250 0.9736 1268.3 840.15 3.2778 7.3994 5.8076 1523.2791 1.0000 1305.08 852 3.7823 6.8910 5.6045 1920.4477

20 Volume 40 1400 1350 1300 (U) m.s -1 1250 1200 1150 1100 1050 (ρ) Kg.m -3 870 860 850 840 830 820 810 800 790 780 770

6,5 5,5 (L f ) 10-10 m International Letters of Chemistry, Physics and Astronomy Vol. 40 21 4,5 (η) Ns.m -2 3,5 2,5 1,5 0,5 11,5 10,5 (β ad ) 10-10 N -1.m 2 9,5 8,5 7,5 6,5 5,5 7,5 7 6,5 6 5,5 5

22 Volume 40 2500 2000 (Π i ) 10 6 N.m -2 1500 1000 500 0 Graphs 1. Mole fraction of Ethyl Oleate VS velocity, density, viscosity, Adiabatic compressibility, Inter molecular free length and Internal pressure. 4. CONCLUSIONS The velocity, density and viscosity of the pure liquids Ethyl Oleate and Ethanol are matching with pervious literature at various temperatures. The formation of.dipole-dipole interactions or hydrogen bonding is expected in binary mixture. Excess parameters will help in estimating the molecular interactions. Acknowledgement The author is very much thankful to University Grants Commission for the financial support through RGNF and Prof. Battula Venkateswara Rao research guide. References [1] Joseph Kestin, Mordechai Sokolov, Willium A. Wakeham, J. Phys. Chem. Ref. Data 7(3) (1978) 941-948. [2] G. Slvaramprasad, M. Venkateshwara Rao, J. Chem. Eng. Data 35 (1990) 122-124. [3] Maria M. Palaiologou, Ioama E. Molinou, J. Chem. Engs. 40 (1995) 880-882. [4] T. E. Vittal Prasad, K. Chandrika, M. Haritha, N. B. Geetha, D. H. L. Prasad, Physics and Chemistry of Liquids: An International Journal 37 (1999) 429-434. [5] Hiannie Djojoputro, Suryadi Ismadji, Journal of Chemical and Engineering Data 50(3) (2005) 1009-1013. [6] Mustafa Vatandas, Ali Bulent Koc, Caner Koc, Eur Food Res Technol. 225 (2007) 525-532.

International Letters of Chemistry, Physics and Astronomy Vol. 40 23 [7] Rui M. Pires, Henrique F. Costa, Abel G. M. Ferreira, Isabel M. A. Fonseca, J. Chem. Eng. Data 52 (2007) 1240-1245 [8] Anil Kumar Nain, Journal of Molecular Liquids 140 (2008) 108-116. [9] Ezekiel D. Dikio, Simphiwe M. Nelana, David A. Isabirye, Eno E. Ebenso. Int. J. Electrochem. Sci. 7 (2012) 11101-11122. [10] J. N. Ramteke, Advances in Applied Science Research 3(3) (2012) 1832-1835. [11] Bhandakkar V. D., Bhat V. R, Asole A.W., Chimankar O. P., International Journal for Pharmaceutical Research Scholars V-3(I-1) (2014) 544-549. [12] R. S. Watane, P. B. Raghuwanshi, Der Pharma Chemica 6(4) (2014) 162-168. [13] Bhandakkar V. D., Bhat V. R., Chimankar O. P., Asole A. W., Advances in Applied Science Research 5(2) (2014) 80-85. [14] Verma R.C., Singh A.P., Gupta J., Gupta R., International Journal of Pharmaceutical Research and Bio-Science 3(3) (2014) 66-72. ( Received 01 October 2014; accepted 10 October 2014 )